
Information Systems 98 (2021) 101710

b
g
n
b
l
d
w
o
u
a
u
d

d
a
l
g

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Fast, scalable and geo-distributed PCA for big data analytics
T. M. Tariq Adnan a, Md. Mehrab Tanjim b, Muhammad Abdullah Adnan a,∗

a Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
b University of California San Diego (UCSD), CA, USA

a r t i c l e i n f o

Article history:
Received 26 May 2019
Received in revised form 19November 2020
Accepted 28 December 2020
Available online 6 January 2021
Recommended by Dennis Shasha

Keywords:
Big data
PCA
Dimensionality reduction
Geo-distributed algorithm

a b s t r a c t

Principal Component Analysis (PCA) is a widely popular technique for reducing the dimensionality of a
dataset. Interestingly, when dimensions of the dataset grow too large, existing state-of-the-art methods
for PCA face scalability issue due to the explosion of intermediate data. Moreover, in a geographically
distributed environment where most of today’s data are originally generated, these methods require
unnecessary data transmissions as they apply centralized algorithms for PCA and thus are proven to be
inefficient. To solve these problems, we take advantage of the zero-noise-limit Probabilistic PCA model,
which provably outputs the correct principal components, and introduce a block-division method for
it in order to suppress the explosion of intermediate data efficiently. We employ several optimization
ideas such as mean propagation for preserving sparsity, dynamic tuning of the number of blocks
to automatically adjust to large dimensions, etc. Additionally, in the geo-distributed environment,
we propose a communication efficient solution by reducing idle time, passing only the required
parameters, and choosing geographically ideal central datacenter for faster accumulation. We refer
to our algorithm as TallnWide. Our empirical evaluation with real datasets shows that TallnWide can
successfully handle significantly higher dimensional data (10×) than existing methods, and offer up to
2.9× improvement in running time in the geo-distributed environment compared to the conventional
approaches. For reproducibility and extensibility of our work, we make the source code of TallnWide
publicly available at https://github.com/tmadnan10/TallnWide.

© 2021 Elsevier Ltd. All rights reserved.
5
c
I
1
p
w
M

s
a
s

1. Introduction

The frequency of data access at the users’ end has increased
y a large amount for the past few years. With such rapid
eneration, data that appear in many applications, such as social
etworks [1], product ratings [2], web documents [3], etc., often
ecome high-dimensional. Unfortunately, most of the machine
earning algorithms cannot operate with such a high number of
imensions [4–7]. As Principal Component Analysis (PCA) is a
idely used technique for dimensionality reduction [8–11], it is
ften desirable to reduce its dimensions (number of columns)
sing PCA to make it thin (lower number of dimensions), and then
pply other machine learning techniques on it. PCA can also be
sed for lossy-data compression [12], feature extraction [13], and
ata visualization [14].
There are several state-of-the-art libraries that offer PCA for

istributed clusters, namely: Mahout [15], MLlib [16], sPCA [17],
nd sSketch [18]. However, PCA algorithms implemented in these
ibraries are not suitable when dimensions (columns) of data
row proportionately with the number of data samples (rows).

∗ Corresponding author.
E-mail address: abdullah.adnan@gmail.com (M.A. Adnan).
ttps://doi.org/10.1016/j.is.2020.101710
306-4379/© 2021 Elsevier Ltd. All rights reserved.
For example, Twitter Network [1] presents a dataset of 50M
users’ followers, which is a 50M × 50M matrix (dimension, D =
0M). These data are quite large concerning both rows (tall) and
olumns (wide). We refer to such data as tall and wide big data.
f we run sPCA or Mahout-PCA on it, for computing the first
00 principal components, it takes over 37.25 GB of memory
er worker node to store the parameter alone (by parameter,
e mainly indicate the principal components or subspace). For
Llib-PCA the situation is much worse. Even for D = 100K , the

parameter takes roughly 74.50 GB of memory per worker node.
Sketch-PCA can provide good scalability up to a certain extent,
nd even then, it faces memory overflow error for datasets with
ignificantly larger dimensions (failed for D ≈ 10M). In summary,
current techniques face out-of-memory error, and to the best of
our knowledge, there is no existing solution.

On top of data being tall and wide, they are often geographi-
cally distributed as almost all the companies (e.g. Twitter, Face-
book, etc.) store information in multiple geographic locations to
ensure privacy and low latency at the users’ end [19–22]. In this
setting, we do not have a global view of such distributed data.
Therefore, even if we deal with datasets with relatively smaller
dimensions for which the parameter fits in the memory, we still
need to gather partial datasets that are spread across different
geographic locations and run existing methods on this centralized

https://doi.org/10.1016/j.is.2020.101710
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2020.101710&domain=pdf
https://github.com/tmadnan10/TallnWide
mailto:abdullah.adnan@gmail.com
https://doi.org/10.1016/j.is.2020.101710

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

d
s
b

m
a
g
f
n
a

i
T
b
o
t
a
t
i

2

l
T
w
c
s
b
e
e

2

f
b
t
i
r
c
h

a
s
t
a
c
m
a
f
p
9
o
p

a
i
c
b

2

h
f
l
c
t
w
s
f
s
t

n
a
m
o
p
y
o
o
d
t
a

ata [19,23,24]. Communication over regions is expensive, and
ome countries even prohibit passing raw data across national
orders [21,22].
Under these circumstances, at present, we need an analytic

ethod that is capable of (1) handling tall and wide big data,
nd (2) performing a communication-efficient calculation in the
eo-distributed environment. In this work, we propose solutions
or each of the cases and present a highly scalable algorithm,
amely TallnWide, for computing PCA. Our main contributions are
s follows:
• To manage tall and wide data, we need a solution that

can scale up for any arbitrarily large number of dimensions
and mitigate the memory overflow error. Block-division is
a right candidate solution for such a problem as it allows
the computation to get divided into manageable blocks.
However, not all techniques of PCA allow computation to
be divided into multiple partitions/blocks. Also, dividing
the computation is non-trivial because of the interlinked
dependencies between matrices and various steps of matrix
operations. To solve these challenges, firstly, we identify a
variant (zero-noise-limit) of Probabilistic PCA (PPCA) [25],
which has a much simpler dependency graph compared to
conventional PPCA and can produce results in fewer steps.
Because of its simplicity, it also allows the computation
to be easily divided into multiple blocks. In this work, we
propose a block-division algorithm for it to scale up PCA for
any arbitrarily large number of dimensions and mitigate the
memory overflow error. To the best of our knowledge, we
are the first to give such a method for PCA.
• For a communication-efficient solution in the geo-

distributed environment, we propose a scheme that seeks to
minimize idle times in computation and avoid bottlenecks
of communication by transmitting only the required param-
eters, and not the raw data. Also, we give a formula that
can choose a geographically ideal central datacenter (DC)
for faster accumulation (a central DC is needed to gather
partial results from all DCs to produce the final result and
transmit it back). Such a scheme saves both computation
and communication costs by a significant margin. We refer
to the whole algorithm as TallnWide.
• For implementing TallnWide, we consider the popular

memory-based distributed framework, Spark [26]. We con-
sider various optimization and effective ideas like tuning
the number of blocks dynamically and employing efficient
accumulation strategy. Moreover, similar to sPCA [17] and
sSketch-PCA [18], we also propagate the mean for sparsity
preservation. We run extensive experiments with four real
large datasets with varying sizes and values in both geo-
distributed (a cluster of DCs from three different regions)
and local environments (each DC as a cluster). Our experi-
ment shows that TallnWide is well capable of handling tall
and wide big data in a datacenter with commodity com-
puting hardware and can complete execution on datasets
with dimensions as high as 50M while existing methods fail
to run on datasets where dimensions reach to 10M. Addi-
tionally, in the geo-distributed environment, our approach
offers up to 2.9× improvement in running time in contrast
to other alternatives.

The rest of the paper is organized as follows. In the follow-
ng section, we discuss the primary motivations for proposing
allnWide in details. In Section 3, we introduce a brief technical
ackground of existing PCA methods. Section 4 discusses state-
f-the-art implementations of these methods. We also point out
heir limitations briefly. We present the design of our proposed
lgorithm in Section 5 with the complexity analysis of it in Sec-
ion 6. Section 7 shows our experimental setup, while Section 8
llustrates the evaluation. Finally, Section 9 concludes the paper.
2

. Motivation

As mentioned in the introduction, there are two main prob-
ems which motivate us to propose an efficient solution for PCA.
he first one is the ever-increasing number of dimensions of data,
hich also makes it very sparse. This requires an algorithm which
an handle an arbitrary number of dimensions and preserve
parsity at the same time. The second one is dataset being by
orn geographically distributed, which requires a communication
fficient solution. We discuss both of them below with illustrative
xamples and use-cases.

.1. High dimensionality with sparsity

With the increasing rate of data generation, the number of
eatures, i.e. attributes per data sample has also been increasing
y a large scale during the last decade. This results in the data
o be very high dimensional, which eventually contributes to the
ncrement of data sparsity. As we already mentioned, a wide
ange of fields such as social network [1], health sector [3], e-
ommerce [2], bio-metric, industries, etc. are often generating
igh dimensional and consequently sparse data.
As an illustrative example, let us consider the user–item inter-

ction matrix, which is a crucial part of building a recommender
ystem in various web platforms. In a user–item interaction ma-
rix, each row denotes a new user, and each column denotes
new item. Typically, for any web service, such as large e-

ommerce systems, both the number of users and items are in
illions, and both increase as the system sees a new user or adds
new item to inventory. However, each user interacts with only a
ew items resulting in a very sparse matrix. For instance, Amazon
roduct data provided by [2] has 21M users’ ratings on a total of
.8M products. However, 99.99% of this dataset is sparse as most
f the users rate only a few items (more details on this dataset is
rovided in Section 7.3).
This example shows how dimensions of data can proliferate

nd how sparsity of the overall dataset can increase along with
t. Therefore, efficient data analytic techniques need to be well
apable of dealing with the sparsity and higher dimensionality of
ig data.

.2. PCA on geo-distributed datasets

Nowadays, data are by born geographically distributed, which
as evolved the requirement of developing a geo-distributed or
ederated learning technique. The main principle of federated
earning is simple: learn a shared model across multiple de-
entralized servers storing local datapoints, without exchanging
hem. This technique not only allows us to build a robust model
ith data from multiple sources but also ensures critical issues
uch as data privacy and security. There are many use-cases
or such federated learning in various fields such as healthcare
ystems [27,28], Financial Services Industry (FSI) [29–31], IoT,
elecommunications [32,33], etc.

For example, in the field of the healthcare systems, one sig-
ificant usefulness of geo-distributed learning is to develop an
nalytical tool for measuring the effectiveness of particular treat-
ents against groups of people all around the world. The target
f such analysis is to identify the characteristic properties in
atients demonstrating better and lower response. A similar anal-
sis can be carried out in order to identify adverse drug reactions
n the patients located at different geographic locations [27]
r to extract significant insights from geo-distributed healthcare
ataset [28]. With the help of geo-distributed data analytics,
his kind of global benchmarking can analyze the patients’ data
t a location close to the collection spot within the geographic

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

b
e
o

o
c
q
a
l
m
r
m
G
c
o
f
i
s
d
m

s
o
e
w

3

n
d
c
p
c
r
i
n

3

[
C
a
(

3

c
(
d
a
c
i

Y

w

t
A
i
t
p

b
I

3

m
t

y

w
c
d
z
s

x

s

P

w

oundaries defined by regulatory compliance. Similar use-cases
xist for Financial Services Industry (FSI) to preserve the security
f the raw data [30] or to detect fraudulent activities [31].
As federated learning is an important and sometimes the

nly technique for geo-distributed data, over the years, it has
aught the researchers’ attention to reduce communication re-
uirements [34,35], or ensure robustness to differential privacy
ttacks [36]. Currently, a good number of federated machine
earning tools are already available [20,21,37]. Additionally, to
eet the new challenges for running machine learning algo-

ithms, and to provide a generalized framework for running the
achine learning tools in a federated setup, Gaia [38] and Tern-
rad [39] were proposed. However, most of these available ma-
hine learning tools and frameworks are not suitable to operate
n datasets with significantly higher dimensionality [4–7]. There-
ore, when it comes to reducing the dimensionality of the data
nto a manageable one or perform any other pre-processing steps
uch as feature extraction [13], lossy-data compression [12], and
ata visualization [14], etc. in such a geo-distributed environ-
ent, the requirement of a federated PCA is certain.
Nevertheless, to the best of our knowledge, in such federated

etup described above, there is no implementation of PCA, and
ut of the necessity, we focus on proposing a communication
fficient solution for federated PCA. We discuss more related
orks in geo-distributed analytics in Section 4.5.

. Technical background

In this section, we briefly go through each of the existing tech-
iques for computing PCA. We consider the following notations:
ata/matrix1 Y , number of rows N , number of columns or we
an say data dimension D, target dimension d (where d ≪ D),
rincipal component matrix V (the columns of V are the principal
omponents of Y). If µ is the mean vector and ⊖ represents the
ow-wise subtraction of a vector from a matrix, then Y c = Y ⊖µ

s the mean centering of the data Y . Later, we will extend these
otations when we discuss our proposal.

.1. Eigen value decomposition

PCA can be computed from Eigen Value Decomposition (EVD)
40] of a covariance matrix [41]. If C is our covariance matrix, then
= (Y T

c ∗ Y c)/(N − 1). We can get the principal components V
nd the Eigen values D of C by performing EVD: [V ,D] = evd(C),
see [42] for details).

.2. Singular value decomposition

Singular Value Decomposition (SVD) is another method of
omputing PCA. If U is an N×Dmatrix with orthonormal columns
U TU = I), V gives the principal components of mean centered
ata matrix Y c which is a N × D orthonormal matrix (V TV = I),
nd Σ is a D×D diagonal matrix with positive or zero elements,
alled the singular values, then SVD decomposes data matrix Y c
nto three components:

c = UΣV T

1 Throughout the paper, we use the term ‘data’ and ‘matrix’ interchangeably.
3

3.3. Stochastic SVD

We can use randomized sketch matrix to reduce big data to
smaller data [43,44] in order to derive principal components. This
method is referred to as Stochastic Singular Value Decomposition
(Stochastic SVD or simply SSVD) [45]. In SSVD, we first start with
sketching the data matrix. To have a sketch matrix, Ω , we can
draw D × m numbers randomly from the Gaussian distribution
ith zero mean and unit variance. Here m is the sketching di-

mension, which is greater than our target rank d, but much less
than D(m≪ D) and m controls the approximation [43]. We have
o multiply Ω with Y c to get sketched data matrix: Z = Y c ∗Ω .
fter having Z , we have to perform QR Decomposition [41] on
t to get orthonormal basis Q : [Q ,R] = qr(Z). Then we have
o perform matrix multiplication Q T

∗ Y c . Finally we have to
erform SVD [41] on Q T

∗ Y c to get principal component V :
[∼,∼,V] = svd(Q T

∗ Y c). To increase the accuracy of the result,
we can take this Q T

∗Y c as new Ω and repeat the previous steps
efore performing SVD on the final result. This is known as Power
teration, and more details can be found in [43].

.4. Probabilistic PCA

Probabilistic PCA (PPCA) is an example of a linear Gaussian
odel [25,46]. The observed variable yc is related to a linear

ransformation of the latent variable x so that

c = W ∗ x+ σ

here yc is a D-dimensional observed or data vector (mean
entered), W is a D × d-dimensional principal subspace, x is a
-dimensional Gaussian latent variable, and σ is a D-dimensional
ero-mean Gaussian distributed noise variable with covariance
s ∗ I . So, we can say,

∼ N (0, I), σ ∼ N (0, ss ∗ I), yc ∼ N (0, W ∗W T
+ ss ∗ I)

Given fixed model parameters W and ss, the following can be
aid about the hidden state x, for some observation yc :

(x|yc) =
P(yc |x) ∗ P(x)

P(yc)

=
N (yc |W ∗ x, ss ∗ I) ∗ N (x|0, I)

N (yc |0, W ∗W T
+ ss ∗ I)

= N (x|β ∗ yc , I − β ∗W) (1)

here β = W T
∗(W ∗W T

+ss∗I)−1. [46] proposed an Expectation
Maximization (EM) algorithm which uses the inference (1) above
in the Expectation (E) step to estimate the unknown state and
then choose W and the restricted ss in the Maximization (M) step
so as to maximize the expected joint likelihood of the estimated
x and the observed yc . We can write down corresponding E-step
and M-step in matrix formulation as follows at kth iteration:

E-step: M = (W k)T ∗W k
+ ssk ∗ I; (2)

E-step: X = (Y ⊖ µ) ∗W k
∗M−1; (3)

E-step: XtX = X T
∗ X + N ∗ ssk ∗M−1; (4)

E-step: YtX = (Y ⊖ µ)T ∗ X; (5)

M-step: W k+1
= YtX ∗ XtX−1; (6)

M-step: ss1 = ∥Y ⊖ µ∥2F ; (7)

ss2 = trace(XtX ∗ (W k+1)T ∗W k+1); (8)

ss3 =
N∑

n=1

Xn ∗ (W k+1)T ∗ (Y ⊖ µ)Tn; (9)

ssk+1 = (ss1 + ss2 − 2 ∗ ss3)/N/D (10)

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

4

w
t
W
a

4

F
a
m

c
a
d
t
m
c

b
w
I
(
o

4

p
t
d

i
t
d

d
t
i
F
l
t

4

f

i
g
(
c

c
d
a
s
z
i
r

e
O
d
P

. Related works

In this section, we give a brief description of various methods
hich are already implemented to compute PCA. Here we analyze
heir time and space complexities along with their limitations.
e only consider distributed settings, and so we do not discuss

ny single machine implementation (for example, [47]).

.1. MLlib-PCA

MLlib [16] is a built-in machine learning library in Spark.
or PCA, MLlib computes EVD of the covariance matrix of Y
nd mainly provides distributed computation of large covariance
atrix. We refer to its method as MLlib-PCA.
Complexity: The major computational part of MLlib-PCA is the

alculation of the covariance matrix. MLlib-PCA is a deterministic
lgorithm and does not leverage sparsity of the matrix, so for a
ata matrix with size N × D, it takes O(ND×min(N,D)) time
o calculate covariance matrix. Also, it creates a large dense
atrix of size D × D, which it needs to store, and thus its space
omplexity is O(D2).
Limitations: This method offers the least scalability because

oth N and D can be very large. For example, even for a data
ith vertical dimension D = 128k, it faces out-of-memory error.

t is mainly because it needs to store a large intermediate data
covariance matrix) of size O(D2), and it quickly faces memory
verflow error as the number of dimensions grows.

.2. Mahout-PCA

Mahout [15] is another popular library that provides the im-
lementation of various machine learning algorithms for dis-
ributed computing. Mahout computes PCA using SSVD for big
ata. We refer to this as Mahout-PCA.
Complexity: In Mahout-PCA, the majority of calculation lies in

the matrix multiplication Q T
∗Y c (m×N multiplied by N×D). Thus

ts computational complexity is O(NDm). The algorithm requires
o store N × m dimensional matrix Q . So the total intermediate
ata can be calculated as O(Nm).
Limitations: This method needs to store a large intermediate

ata, which is the main bottleneck. As N is large, transmitting
he N × m sized intermediate data can take a very long time
n communication and a lot of space in memory of each node.
urthermore, it fails to compute PCA on a dataset with dimension
arger than 5M (see Table 4 for experimental outcome) as it fails
o store the parameter of dimension N ×m.

.3. sPCA

[17] presents a scalable implementation of Probabilistic PCA
or distributed platforms, which they referred to as sPCA.

To improve the performance of the basic EM algorithm, sPCA
ncorporates several special features, such as (1) mean propa-
ation to leverage sparsity, (2) minimizing intermediate data,
3) efficient matrix multiplication, (4) efficient Frobenius norm
omputation, etc.
Complexity: The major part of computation in sPCA is done on

alculating X and ss3 by multiplying N × D sized mean-centered
ata Y c = (Y ⊖µ) by D× d sized parameter W k/W k+1. So, there
re two operations which take O(NDd). However, sPCA preserves
parsity in calculations. Therefore, if nnz(Y) represents the non-
ero elements of Y , the complexity would be O(nnz(Y)× d). Also,
n each iteration, the parameter W k has to be passed and stored,
esulting in the space complexity to be O(Dd).

Limitations: By far, sPCA offers the most scalability. How-
ver, similar to the case of Mahout-PCA (by requiring to store
(Dd) parameter), sPCA too faces out of memory for higher-
imensional data. On top of that, there is no implementation of
CA on geographically distributed big data.
4

4.4. sSketch-PCA

sSketch-PCA [18] utilizes the SSVD technique in the compu-
tation of PCA which provides a scalable implementation of the
Gaussian sketch method and then uses it for PCA. Similar to sPCA,
it also uses various optimization ideas, such as (1) mean prop-
agation for sparsity preservation, (2) effective job consolidation,
and (3) on-the-fly computation which minimizes the generation
of intermediate data, etc.

Complexity: In the sketching phase, in order to generate a
Gaussian sketch matrix, Ω of dimension D × d, numbers are
randomly selected from Gaussian distribution with zero mean
and unit variance. The major part of computation in sSketch
lies in the generation of the sketched data matrix Z (D × d)
by multiplying the sketch matrix with the mean-centered data
matrix, Y c (N × D). Similar to sPCA, as sSketch incorporates
sparsity preservation using mean propagation, the computation
complexity is O(nnz(Y)× d), where nnz(Y) denotes the non-zero
entries of Y . In each iteration, Y T

∗ Z of dimension D × d and
ZT
∗ Z of dimension d × d is stored and transmitted. Therefore,

the space complexity is O(Dd).
Limitations: sSketch-PCA is the most scalable among the tech-

niques which used SVD to compute PCA. By using various mod-
ifications, like avoiding both reduce operation and redundant
computations, use of accumulators, and preservation of sparsity
of both input and intermediate data, it successfully reduces the
constant factors in the running time. However, it still requires a
space complexity of O(Dd).

Therefore, similar to the other state-of-the-art methods, as the
dimension, D becomes very high, sSketch also incurs memory
overflow error.

For more details on the complexities and limitations of these
state-of-the-art techniques, interested readers are encouraged to
read the survey [48].

4.5. Geo-distributed analytics and large parameter

Recently, geo-distributed analytics has gained much atten-
tion to avoid bottlenecks that are incurred for pulling all ge-
ographically distributed data to a central location. For exam-
ple, [21] proposed Geode for running SQL queries efficiently in
the geo-distributed environment. Similarly, to reduce query re-
sponse time, a system for low latency geo-distributed analytics,
namely Iridium, was proposed in [20]. To meet new challenges
for running machine learning algorithms, Gaia and TernGrad was
proposed in [38] and [39], respectively. Nevertheless, for PCA, to
the best of our knowledge, there is no solution in geo-distributed
settings. All the methods mentioned above for PCA run on aggre-
gated data in a central DC. Additionally, to overcome scalability
challenges for the large parameter in other machine learning
algorithms, parameter servers have been introduced in [49,50] for
single DC. However, in a geo-distributed environment, dedicating
one DC as a parameter server is impractical. Therefore, in this pa-
per, we propose a novel solution for handling large parameter for
PCA in a single DC as well as in an environment of geographically
distributed ones.

5. Our proposed algorithm: TallnWide

In this section, we discuss our proposed algorithm, TallnWide,
in details. For a better explanation of our works, we extend
the notations we have used in the previous sections. Terms and
notations are as follows:

• S is the total number of DCs. d is our target dimension.
• Ns represents number of rows of the data residing in sth DC.∑S
So, the total number of rows is N = s=1 Ns.

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710
• I is the total number of divided blocks of the parameter.
• Di represents the number of columns in the ith block of the

data. So, total number of columns D =
∑I

i=1 Di.
• Y s represents the dataset in sth DC, Y s,i is the ith block of

the dataset residing in sth DC (size Ns×Di). Y is the overall
geo-distributed data, so we have:

Y =

⎡⎣ Y 11 . . . Y 1I
.

Y S1 . . . Y SI

⎤⎦
We denote such vertical concatenation byΞ and horizon-
tal concatenation by

∏
so that

Y =
S

Ξ
s=1

Y s =

S

Ξ
s=1

I∏
i=1

Y s,i

By concatenation, we do not mean any accumulation or
summation (for which we use

∑
), rather we mean stacking

on top/side of each other. Here, Y s,i is of Ns × Di size.
• µ =

∏I
i=1 µi is the mean vector of all columns.

• W k
=Ξ

I
i=1 W

k
i is the D × d size principal components,

i.e. our parameter, at kth iteration. Here, W k
i is the ith block

of W k (size Di × d) at each DC at kth iteration.
• X = Ξ

S
s=1 X s is the N × d size latent data, where X s (size

Ns × d) is the latent data at sth DC.
• In the scenario of tall and wide big data analysis, generally

the data Y with dimension N×D is large and sparse and the
parameter W with dimension D× d is large and dense.

5.1. Handling tall and wide big data

By Tall and Wide Big Data, we mean both N and D are quite
large, and as D ≈ N , parameters for PCA increase proportion-
ately and thus they will not fit into the memory of the slave
machines in a single DC. To overcome this challenge in scala-
bility, we divide the parameter into manageable chunks/blocks
to divide/distribute computations among the working nodes in
order to get faster result and scale the computation. However,
splitting the parameter into blocks to perform PCA is a non-trivial
task. For example, when we try to isolate matrix computations
of EVD for PCA, we reach a dead-end because EVD requires the
D × D covariance matrix as a whole for decomposition [42].
Similarly, SSVD requires storing of N × m dimensional matrix
Q , and so it too has a high memory requirement. Compared to
these techniques, we find that PPCA holds significant promise
since it has relatively low memory footprint [48] and there is no
additional decomposition involved. Second part of the challenge
is to reduce steps of the algorithm in simple matrix–matrix and/or
matrix–vector operations. We have to make sure that the division
does not cause unnecessary overheads or bottlenecks. We also
have to divide other intermediate data into blocks as well and
resolve inter-dependencies. We should emphasize that due to
these various challenges, we have not seen any block-division
algorithm for PCA in a distributed platform.

In PPCA, our initial goal is to generate W k first, for kth itera-
tion. W k has to reside at each DC as it is the central parameter
for the whole algorithm. Since we only want to calculate princi-
pal components, we can ignore the noise and only run the EM
algorithm with zero-noise (considering the value of noise to be
zero) to refine the parameter W k . We refer to this as zero-noise-
limit PPCA. Later, we will provide proof that zero-noise-limit PPCA
indeed outputs the correct principal components. As noise is zero,
we do not need (7)–(10) and steps of PPCA, (2)–(6) are changed
as follows:

E− step : M = (W k)T ∗W k
;

5

X = (Y ⊖ µ) ∗W k
∗M−1;

E− step : XtX = X T
∗ X;

YtX = (Y ⊖ µ)T ∗ X;
M− step : W k+1

= YtX ∗ XtX−1

Now, we can easily divide the computations into smaller chunks.
This proves to be significant and crucial when handling parameter
of a bigger size. At a time, sth DC works with the ith block of the
parameter that fits in the memory, i.e. at kth iteration, only W i

k

fits. When k = 1, W 1 is initialized randomly. Now, block-wise
division of computation for M looks like this:

E− step : M = (W k)T ∗W k
=

I∑
i=1

(W k
i)

T
∗W k

i

This calculation is illustrated as the left figure in Fig. 1. Each DC
generates (W k

i)
T
∗W i

k at a time, and all the results from blocks
have to be added locally for getting full result M . Note that each
DC has the same M after this operation.

Now, we divide the computation of X as follows:

E− step : X =
S

Ξ
s=1

X s =

S

Ξ
s=1

(Y s ⊖ µ) ∗W k
∗M−1

=

(S

Ξ
s=1

I∑
i=1

(
Y s,i ∗W i

k ⊖ µi ∗W i
k))
∗M−1

=

(S

Ξ
s=1

I∑
i=1

Z s,i

)
∗M−1 = (

S

Ξ
s=1

Z s) ∗M−1

where, Z s,i =
(
Y s,i∗W i

k⊖µi∗W i
k) and Z s =

(
Y s∗W k⊖µ∗W k).

Computation of Z s is illustrated as the middle figure in Fig. 1.
Interestingly, we need not form full X , we need only Z s at each
DC and multiply it by M−1 (which each DC already has) for
computing XtX (illustrated as the right figure in Fig. 1):

E− step : XtX = X T
∗ X

=

(S

Ξ
s=1

X s
T
)
∗

(S

Ξ
s=1

X s

)
=

S∑
s=1

X s
T
∗ X s

= M−1 ∗
(S∑

s=1

Z s
T
∗ Z s

)
∗M−1

For the last stage of the expectation, we need not form YtX
explicitly. Instead, we can go directly to the maximization stage
and derive the parameter:

M− step : W k+1

=

((S

Ξ
s=1

(Y s ⊖ µ)
)T
∗

(S

Ξ
s=1

X s
))
∗ XtX−1

=

((S

Ξ
s=1

I∏
i=1

(Y s,i ⊖ µi)
)T
∗

(S

Ξ
s=1

Z s
))
∗M−1 ∗ XtX−1

=

S∑
s=1

(I

Ξ
i=1

(Y T
s,i ∗ Z s ∗MXtX − µT

i ∗ zs ∗MXtX)
)

where vector zs denotes the sum of all rows of Z s and MXtX =
M−1 ∗ XtX−1. Notice that, since subtracting the mean vector
from the data matrix results in creating a dense matrix, at each
step, we consider operations with mean vector µ separately for

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

m

p
p

5

o
c
a
r
p
p
i

W

A
o
t
b
W
b
T
o
D
s

Fig. 1. Generation of M (left), Z (middle), and XtX (right) in parallel fashion among all DCs. For simplicity, operations for mean vector, µ, are not shown in the
iddle figure.
t

r
D
u
r
t
w
e

reserving sparsity in the input matrix Y . We refer to this asmean
ropagation [48].

.2. Communication efficient calculation

The order at which we perform the matrix operations for
ur block-division plays a significant role in communication effi-
iency. In the block-division method, the partial results generated
t each DC will be gathered by a central DC, and the aggregated
esults will be transmitted back to all other DCs. We refer to this
rocess as Geo-Accumulation or simply accumulation. We now
resent various approaches of geo-accumulation to transfer our
ntermediate results.

Approach 1: Trivial Order. At the current order of computing
k+1 mentioned in the M Step, the following happens:

W k+1
=

S∑
s=1

(Partial results of all blocks from all DCs
I

Ξ
i=1

(Y T
s,i ∗ Z s ∗MXtX − µT

i ∗ zs ∗MXtX)
)

Geo-Accumulation of partial results

(11)

s W k has been horizontally partitioned into I blocks, in this
rder, each DC will generate partial results for each block. After
hat, all the partial results from every DC will be accumulated
y the central DC and multiplied by MXtX to get the final result
k+1. In the current order, raw data need not be transmitted,

ut it creates a tremendous amount of idle time in worker nodes.
o see why let us imagine the case for a single DC. As at a time
nly one block fits into the memory, the worker nodes of a single
C produces partial results for i = 1 first, and save it to the
econdary storage, for making room for next segments (i.e., i = 2)
in memory. In this fashion, we first have to generate (incurring
CPU time) and store (incurring Disk I/O) all partial results for each
block in each DC. When it is finished, we have to retrieve (which
has a Disk I/O) each block from each DC for accumulation (which
has a Network I/O) by the central DC. After accumulation, the
aggregated result of each block will be transmitted back to each
DC and stored again. This is shown as Approach 1 in Fig. 2.

Approach 2: Efficient Order. Now, we consider the reversed
order of the computation, as mentioned in (11) above. The re-
versed order follows:

W k+1
=

I

Ξ
i=1

(Geo-Accumulation for full result ofith block
S∑

s=1

(Y T
s,i ∗ Z s ∗MXtX − µT

i ∗ zs ∗MXtX)
)

Full result for all blocks

(12)

In this order, we can accumulate partial results for each block
from each DC after they are generated. While we accumulate for
one block, we can start the calculation for the next block because
6

Fig. 2. Comparison of idle time among different approaches. Approach 1: Trivial
Order, Approach 2: Efficient Order, and Approach 3: Efficient Order w/ Ideal
Central DC.

there is no dependency. This is shown as Approach 2 in Fig. 2.
In contrast to Approach 1 from Fig. 2, we can see that Approach
2 reduces the idle time significantly. This kind of highly efficient
ordering technique which enables parallelism in computation and
transmission is known as Grouped Aggregate Pushdown [51] and
very popular in the database research community.

Approach 3: Efficient Order w/ Ideal Central DC. In addition
to Approach 2, as every DC has to send their partial results to
a central DC for accumulation, we should choose such a DC as
the central one for which the slowest link is maximum among
all the candidate DCs. Mathematically, let us first assume that we
have a symmetric B/W matrix B where each cell Buv denotes B/W
between DC u and DC v (u, v ∈ {1, . . . , S}). For every DC u, we
first determine the slowest B/W link from its connections to all
other DCs v (v ̸= u, v ∈ {1, . . . , S}). Then from a set of such B/Ws
for every DC u, we can select the DC for which the following is
rue:

argmax
u∈{1,...,S}

(
min{Buv|v ̸= u, v ∈ {1, . . . , S}}

)
(13)

If there are multiple DCs, we can select any of them. We
efer this selected central DC for accumulation as ideal central
C. This is shown as Approach 3 in Fig. 2, and theoretically by
sing this ideal central DC the time required to collect the partial
esults from other DCs and the redistribution task should be
he minimum, and thus it offers the fastest accumulation. Later,
e will validate the merit of this final approach through our
xperiment.

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

5

c
n

L
i
a

P

P

o
m

d
p
c
b
a
o
F
p
s
a

6

t
w
T
a
O
d
s
d
o
s
e
b

g
s

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

p
s
r
m
i
l
s

.3. Validation of zero-noise-limit probabilistic PCA

In this section, we validate zero-noise-limit PPCA over the
onventional PPCA according to [25]. We first show that zero-
oise-limit PPCA produces the correct principal components.

emma 5.1. PCA is a limiting case of the linear-Gaussian model
n (1) as the covariance of the noise σ becomes infinitesimally small
nd equal in all directions, i.e. σ = limss→0 ss ∗ I .

roof. For σ = limss→0 ss ∗ I , inference (1) becomes:

(x|yc) = N (x|β ∗ yc , I − β ∗W);

β = lim
ss→0

W T
∗ (W ∗W T

+ ss ∗ I)−1

P(x|yc) = N (x|(W T
∗W)−1 ∗W T

∗ yc , 0)

= δ(x− (W T
∗W)−1 ∗W T

∗ yc)

Since the noise has become infinitesimal, the posterior over states
collapses to a single point, and the covariance becomes zero. This
has the effect of making the likelihood of a point yc dominated
solely by the squared distance between it and its reconstruction
W ∗ x. But the directions of the columns of a matrix which
minimize this error are known as the principal components. As
columns ofW have this property, we have our desired output. □

This version of PPCA is what we have referred to as zero-
noise-limit PPCA. And we just have designed the block-division
EM-algorithm for this version. For more details and correctness
of the EM-steps, interested readers are encouraged to read [25].

This zero-noise-limit PPCA has significant advantage over con-
ventional PPCA. To explain why, let us consider the scenario
where we calculate noise ss in our steps according to Eqs. (7)–
(10). For ss, we have to calculate ss1 (which needs to be calculated
nly once), ss2 and ss3. Among them, the calculation of ss3 is the
ost complicated:

ss3 =
N∑

n=1

S∑
s=1

(
X T

s,n ∗
(I∏
i=1

(W k+1
i)T ∗

I

Ξ
i=1

(Y T
s,i,n ⊖ µT

i)
))

We can see that the calculation of ss3 in kth iteration is
ependent on the calculation of entirely accumulated updated
arameter for the next iteration, i.e., W k+1. This unnecessarily
omplicates the computation and introduces inter-dependency
etween steps and reduces the scope for maximization of par-
llelism. To illustrate, let us contrast the dependency diagram
f our zero-noise-limit PPCA and the conventional PPCA. From
ig. 3, it is evident that conventional PPCA has additional com-
lications while zero-noise-limit PPCA requires simple and fewer
teps. With this validation, we conclude our overall design for the
lgorithm TallnWide.

. Algorithm and complexity analysis

In this section, firstly, we give a detailed description of our
wo main algorithms, namely TallnWide, and Geo-Accumulation,
hich are shown in Algorithm 1, and 2, respectively. Algorithm
allnWide shows the necessary steps of performing PCA on tall
nd wide big data in a geographically distributed environment.
n the other hand, Algorithm Geo-Accumulation performs the
istributed accumulation task using the detected ideal DC. It
hould be noted that TallnWide algorithm can be run in two
ifferent modes: (i) On a single cluster by setting the number
f servers s to zero. We refer to this mode of execution as the
tandalone mode. (ii) On geographically distributed clusters where
ach datacenter holds its own version of data. TallnWide is capa-
le of handling tall and wide big data in both standalone and in
7

eo-distributed modes. The computational, communication, and
pace complexities are analyzed in the latter part of this section.

Algorithm 1: TallnWide
Input : Data matrix Y of dimension N × D,

target dimension d,
number of servers S,
B/W matrix B

Output: Principal Component W
1 W 1

= normRand(D, d) ▷ Oc (1)
2 iDC = detIdealDC(B)
3 I = detNumBlock()
4 µ = mean(Y) ▷ Oc (D)
5 M = newMatrix(d, d)
6 Z s = newMatrix(Ns, d)
7 for each iteration k← 1 to K do
8 for each DC s ∈ {1, . . . , S} do
9 for each block i← 1 to I do
0 W k

i = load(W k, i)
1 M += (W k

i)
T
∗W k

i ▷ Ot (Did2)
2 Zm = µi ∗W k

i
3 Z s += Ys,i ∗W k

i ⊖ Zm ▷ Ot (nnz(Ys,i)d)
4 end
5 ZtZ = Geo-Accumulation(Zs

T
∗ Zs, iDC) ▷ Oc (d2)

6 MXtX = M−1 ∗ (M−1 ∗ ZtZ ∗M−1)−1 ▷ Ot (d2)
7 end
8 for each block i← 1 to I do
9 for each DC s ∈ {1, . . . , S} do
0 W k+1

s,i = Ys,i
T
∗ Zs ∗MXtX − µi

T
∗ zs ∗MXtX ▷ Ot (nnz(Ys,i)d)

1 W k+1
i = Geo-Accumulation(W k+1

s,i , iDC) ▷ Oc (Did) andOs(Did)
2 end
3 end
4 if converged then
5 W = W k+1

6 stop
7 end
8 end
9 return W

6.1. Algorithm description

We summarize the basic steps of TallnWide in Algorithm 1.
To reduce communication time for the first iteration, we only
send the seed for a random number generator so that each DC
can generate the same W 1 locally. In Line 1, ‘‘normRand(D,d)’’
roduces random Gaussian matrix of size D × d with the given
eed. In Line 2 and 3, ‘‘detIdealDC(B)’’ and ‘‘detNumBlock()’’
espectively determines the ideal central DC ‘‘iDC ’’ from B/W
atrix B and number of blocks I . The steps of determining the

deal central DC are designed according to Eq. (13). In the next
ine, ‘‘mean(Y)’’ outputs the mean matrix µ. Line 5 and 6 re-
pectively initialize the two matrices M (size d × d) and Z s
(size Ns × d) with zero values. ‘‘load(W k, i)’’ loads ith block from
W k in Line 10. We derive necessary intermediate data, namely
M , Z , ZtZ and MXtX (see Fig. 3(b)), for calculating W k+1 in
Line 11, 13, 15 and 16. Line 18 to Line 23 refer to necessary
operations for (12). ‘‘Geo-Accumulation(Matrix A, iDC)’’ performs
geo-distributed accumulation of any data matrix A using ‘‘iDC ’’ in
Line 15 and 21. Finally, we check convergence in Line 24. It should
be mentioned that this TallnWide algorithm shows the steps done
in a generalized platform-independent environment. However,
we describe the detailed computation of two of our significant
steps in Spark distributed environment in the following section.
Algorithm 2 shows the process of accumulating partial results in
details. If the DC itself is the ideal central DC, then it accumulates

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

1

1

1

1

1

1

1

1

n
A
a
a
a
r
i
s
c
t

6

O
p
a
p
d
o
p
i
O

c
L
m
i
P
c

Fig. 3. Matrix dependency diagram of two variations: (a) conventional PPCA (implemented in sPCA) and (b) zero-noise-limit PPCA (implemented in TallnWide).
m
(

F
t
f
e
r
d

W
n
c

Algorithm 2: Geo-Accumulation
Input : Partial result A in Matrix form,

iDC which denotes the ID of Ideal DC
1 myID = loadID()
2 if (myID == iDC) then
3 DClist = {1, . . . , S} − {myID}
4 while (not done for every s ∈ DClist) do
5 if notifiedFrom(s) then
6 addNewProcess(A = A+ As)
7 remove s from DClist
8 end
9 end
0 for each DC s ∈ DClist do
1 sendData(A, s)
2 end
3 end
4 else
5 sendData(A, iDC)
6 notifyMaster(iDC)
7 end

all the partial results that are already received from the other DCs.
The ‘‘notifiedFrom(s)’’ function determines whether any Done
otification is received from DC s or not. However, upon receiving
s (the partial result of full data A in matrix form received from
ny DC s), the ideal DC starts a new process to accumulate it
nd remove s from the consideration list. At the end of the
ccumulation process, the ideal central DC redistributes the final
esult to each of the DCs. On the other hand, if the DC is not the
deal central DC itself, then it concludes its accumulation task by
ending the partial result A which is to be accumulated to the
entral DC and by notifying (sending a Done notification) it about
he task.

.2. Complexity analysis

We denote time, space and communication complexities by
t , Os, and Oc , respectively. Now we show the line-wise com-
lexity in Algorithm 1. Since we are only sending the seed for
random number generator, Line 1 has a communication com-
lexity of Oc(1). Line 4 sends the partial mean value at each
atacenter, and the aggregated mean generation demands the use
f geo-distributed bandwidth which has the communication com-
lexity of Oc(D). Both M and MXtX are generated redundantly
n each of the datacenters with computational complexities of
t (Did2) and Ot (d2), respectively.
However, only major computation in each iteration is the full

alculation of Y∗W and Y T
∗Z (aggregated result from Line 13 and

ine 20) which takes Ot (nnz(Y)×d) time (we preserve sparsity in
ultiplication in Line 13 and 20 by mean propagation). Similarly,

n each iteration, only major data for storing is the block of the
CA parameter, i.e. W i (size Di × d) in Line 21. So the space
omplexity is O (D d). Note that D < D. Finally, accumulation
s i i

8

Table 1
Comparison of complexities among all methods. Since we divide the parameters
into blocks, our space complexity is less than others. Also, despite having the
same time complexity w.r.t. sPCA and sSketch-PCA, we reduce the constant
factors in running time of TallnWide significantly.
Method Time complexity Space complexity

MLlib-PCA Ot (ND×min(N,D)) Os(D2)
Mahout-PCA Ot (NDm) Os(Nm)
sPCA Ot (nnz(Y)× d) Os(Dd)
sSketch-PCA Ot (nnz(Y)× d) Os(Dd)
TallnWide Ot (nnz(Y)× d) Os(Did)

time of W k+1 in Line 21 dominates others, so communication
complexity is Oc(Did). As other methods are not geo-distributed,
we only compare time and space complexities of TallnWide in
Table 1. Note that, as we do not calculate noise, we reduce the
constant factors in computation time by a significant fraction.
Also, because of block-division, our space complexity is less than
others, and consequently, we do not face the out-of-memory
error.

7. Experimental design

In this section, first we provide a detailed discussion of Spark
implementation of our algorithm. After that, we discuss the setup
that we use to run our experiments. In the following section, we
discuss the experimental outcome.

7.1. Spark implementation

The main goal of our algorithm is to calculate PCA in a geo-
graphically distributed setup. To achieve a distributed environ-
ment, we consider the distributed framework Spark [26]. In this
section, we show spark implementation based computation steps
to generate necessary intermediate data during the lifetime of our
main TallnWide algorithm (Algorithm 1).

Algorithm 3 shows how we achieve the task of generating
the intermediate data Z (Line 13 from Algorithm 1) in Spark
environment. In Line 1, the zip operation combines the data
atrix Y with the intermediate matrix Z of the previous iteration

in case of the first iteration, the input Z is the zero-filled initial
matrix). The map operation in Line 3, which runs for each ith row
of Y nZ can be carried out in parallel by each of the worker nodes.
or each row of Y nZ , in Line 4, the temporary variable Yi retrieves
he corresponding row from data matrix Y . Only those values that
all within the horizontal dimension range from start to end are
xtracted. On the other hand, at Line 5, the temporary variable Zi
etrieves the corresponding row from the previous intermediate
ata matrix Z .
After that, Yi is multiplied by the principal subspace matrix
k of the previous iteration to generate a quantity dotRes. Fi-

ally, in Line 7, this dotRes is added to the variable Zi, while the
orresponding row from Z is subtracted. When all the worker
m

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

Algorithm 3: SegmentedZJob
Input : Principal Subspace Matrix W k ;

Data Matrix Y ;
start which denotes the starting Index for Block I;
end which denotes the ending Index for Block I;
Intermediate Matrix Z from previous iteration;
Zm which denotes the mean(Y) multiplied by W

Output: Updated Intermediate Matrix Z
1 YnZ = Y .zip(Z)
2 ZSum = accumultor(newMatrix(Ns, d))
3 YnZ .map{(YnZ)i ⇒ ▷ Runs for each ith row of YnZ;
4 Yi = (YnZ)i.arg0().range(start, end)
5 Zi = (YnZ)i.arg1()
6 dotRes = Yi ×W k

7 ZSum.add(Zi + dotRes− (Zm)i)
8 }
9 Z = ZSum.value()
0 return Z

nodes are done with the map operation, a new version of the
intermediate data Z is generated and returned.

Generation of our parameter W (Line 20 from Algorithm 1)
can be divided into two parts: computing (Y T

s,i ∗ Z s − µi
T
∗ zs)

which we refer to as generating YtZ and multiplying it with
previously generatedMXtX . Algorithm 4 provides the mechanism
of generating YtZ and ZtZ (a part of MXtX) in Spark environment.
Similar to Algorithm 3, here the map operation is run for each
ith row of Y nZ and the operation is carried out by each of the
worker nodes for their corresponding data segment which has
been distributed by Spark. Note that, ZtZ is generated only for
the first iteration while new YtZ is generated at every iteration.

7.2. Algorithms compared

For computing principal components, we compare five meth-
ods:

• TallnWide: Our implementation of the algorithm TallnWide.
• sPCA: A scalable implementation of PPCA [17].
• Mahout-PCA: Mahout implementation of PCA [15].
• MLlib-PCA: PCA implementation in MLlib [16].
• sSketch-PCA: PCA implementation using a scalable sketch-

ing technique [18].

The implementations of Mahout-PCA, as well as MLlib-PCA, are
highly optimized in their respective platforms. On the other hand,
the sPCA implementation on Spark has added some advanced
features and has been quite successful in outperforming most
of the close competitors. Finally, sSketch-PCA utilizes a scalable
implementation of Gaussian sketching method along with vari-
ous optimization techniques in order to achieve high scalability.
Therefore, we find the algorithms as mentioned above to be the
best options for comparing with TallnWide to establish its merit.
For uniform comparison, we make all PCA algorithms to compute
the top 10 principal components.

7.3. Datasets

We use four real datasets. All of them are quite diverse in
terms of size, dimensions, sparsity, and data values. Moreover,
we generate various subsets of the four datasets so that we
can assess the scalability and performance of comparing PCA
algorithms with increasing data sizes. The following list describes
the datasets by showing their source, dimension and sparsity.
If the number of rows and columns of a dataset are N and D
9

Algorithm 4: SegmentedYtZnZtZJob
Input : Iteration number k;

Data Matrix Y ;
µ which denotes mean(Y);
Di which denotes the No of Rows in ith segment of W ;
Target Dimension d;
Intermediate Matrix Z;
start which denoted the starting Index for Block I;
end which denotes the ending Index for Block I

Output: Intermediate Data ZtZ;
Intermediate Data YtZ

1 YnZ = Y .zip(Z)
2 if (k == 1) ▷ Iteration for the 1st Segment of W
3 then
4 YtZSum = accumultor(newMatrix(Di, d))
5 ZtZSum = accumultor(newMatrix(Di, d))
6 YnZ .map{(YnZ)i ⇒ ▷ Runs for each ith row of YnZ
7 Zi = (YnZ)i.arg1().range(start, end)
8 (YtZ)i = Y T

i × Zi − µT
× Zi

9 (ZtZ)i = ZT
i × Zi

0 YtZSum.add((YtZ)i)
1 ZtZSum.add((ZtZ)i)
2 }
3 YtZ = YtZSum.value()
4 ZtZ = ZtZSum.value()
5 return YtZ , ZtZ
6 end
7 else
8 YtZSum = accumultor(newMatrix(Di, d))
9 YnZ .map{(YnZ)i ⇒ ▷ Runs for each ith row of YnZ
0 Yi = (YnZ)i.arg0().range(start, end)
1 Zi = (YnZ)i.arg1()
2 (YtZ)i = Y T

i × Zi − µT
× Zi

3 YtZSum.add((YtZ)i)
4 }
5 YtZ = YtZSum.value()
6 return YtZ
7 end

respectively, then the sparsity of that dataset is measured as
follows: sparsity = # of zero elements/(N ∗ D).

• PubMed: PubMed is a sparse, bag-of-word representation
of medical documents from the U.S. National Library of
Medicine. [3] provides a matrix from this dataset where the
rows represent the documents, and the columns represent
the words (values are either 0 or 1). Its size is 8, 200, 000×
141, 043. The number of non zero elements in this dataset
is 483,450,157, and the sparsity is 0.9995. We also consider
a small subset of this dataset with a dimension of 2000,
referred to as PubMed2K.
• AmazonRating: Amazon product data provided by [2] con-

tains product reviews and meta-data from Amazon. It is
a sparse matrix of size 21M × 9.8M , and the values are
between 0 and 5. The value at the cell [i][j] represents the
rating given by the user i to the product j. The number of non
zero elements in this dataset is 82,676,840, and the sparsity
is 0.9999. We also consider two subsets: AmazonRating2K
(size 6.6M × 2K) and AmazonRating50K (size 6.6M × 50K).
• SiftFeature: We download images from ImageNet [52] and

from each image, we extract SIFT (Scale-Invariant Feature
Transform) [53] features. It is a dense matrix of size 4455091
× 128 (with sparsity value of 0.2272), and each element is
a real value.
• Twitter: We take a 50M × 50M dataset from [1] which is

a sparse matrix (with sparsity value of 0.9999) of social

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

7

m
t
(
e
T
w
h
t
r

e
c
m
o
s
3

d
n
O
a
c
f
B
m
m
2
t
t

7

f
r
s
a

Table 2
Bandwidth (in MB/s) among geo-distributed DCs.
DC/DC Ireland N. Virginia 1 N. Virginia 2 Oregon 1 Oregon 2

Ireland – 11.35 MB/s 10.95 MB/s 9.25 MB/s 11.60 MB/s
N. Virginia 1 11.35 MB/s – 81.30 MB/s 18.05 MB/s 18.20 MB/s
N. Virginia 2 10.95 MB/s 81.30 MB/s – 17.50 MB/s 17.70 MB/s
Oregon 1 9.25 MB/s 18.05 MB/s 17.5 MB/s – 126.95 MB/s
Oregon 2 11.60 MB/s 18.20 MB/s 17.70 MB/s 126.95 MB/s –
Table 3
Effect of ρ on the choice of different number of blocks.

AmazonRating Twitter10M

ρ Number of
blocks

Block size
(MB)

Time per
iteration (s)

Number of
blocks

Block size
(MB)

Time per
iteration (s)

10 1 2918 Failed 2 2213 Failed
30 2 1628 591.70 3 1811 597.54
40 3 1105 742.47 4 1425 877.31
60 4 917 1444.22 5 1007 1635.71
H
O
m
i
s
m

8

n
m

8

T
b

f
c

I

w
m
T
z
o
i
t
u
a
t
t
t
m
m
t
b
T

network (values are 0 and 1) of Twitter users. From this
dataset, we primarily consider two subsets: Twitter1K (size
59670 × 1K) and Twitter10M (size 10M × 10M). We also
make several other low dimensional subsets as needed (not
mentioned as separate names).

.4. Cluster configuration

We run our TallnWide algorithm in two different environ-
ents: (i) firstly, in a single cluster (standalone mode) to assess

he capability of handling arbitrarily large dimensional datasets;
ii) secondly, in geo-distributed clusters where partial results gen-
rated by each cluster need to be aggregated and redistributed.
he first experiment mainly focuses on computational capability,
hich can provide efficient memory utilization. On the other
and, the later one needs efficient inter datacenter communica-
ion scheme. In this subsection, we describe the cluster configu-
ation to create the above mentioned two environments.

Single DC Configuration for Standalone Mode: We run the
xperiments for a single DC (standalone mode) by creating a
luster on the Amazon EMR. Our cluster consists of 8 Amazon EC2
3.xlarge instances, each of which contains eight vCPU, 15 GB
f memory, and 80 GB SSD storage. Each node has the following
oftware installed: emr-5.7.0, Hadoop 2.7.3, Spark 2.1.1, Ganglia
.7.2, and Mahout 0.13.0. MLlib library is included in Spark.
Geo-distributed DCs Configuration: For simulating geo-

istributed environment, we consider three geographical regions,
amely North Virginia, Oregon, and Ireland. In North Virginia and
regon, we consider two separate zones, which are referred to
s North Virginia 1 & 2, and Oregon 1 & 2. In Ireland, we only
onsider one zone referred to as Ireland. That means we consider
ive different geographic locations. Table 2 shows the inter-DC
/Ws. In each zone, to create a cluster, we take 3 Amazon EC2
3.2xlarge instances each of them having 16 vCPU, 30 GB of
emory, and 160GB SSD and install following software: Hadoop
.6, Spark 2.0.0, and Ganglia 3.7.2. Depending on the implemen-
ation, we deploy different kinds of geo-distributed clusters on
hese 15 instances (described later).

.5. Performance metrics

In case of standalone mode evaluation, we consider three per-
ormance metrics: running time to achieve the desired accu-
acy, scalability, and intermediate data size. In addition, we also
how the effect of the number of blocks on the running time
nd scalability. For checking convergence, we use the following
10
criteria:

∆W = max
(
|W k
−W k+1

|/
(
ϵ +max(|W k+1

|)
))

where W is our principal component. Here |.| denotes the abso-
lute value of the term, and max returns the maximum element of
a matrix. When we say 5% tolerance for convergence, we mean
changes in elements of W or ∆W is less than or equal to 5%.
ere ϵ is a small number to avoid any division-by-zero error.
n the other hand, in case of geo-distributed evaluation, we
ainly focus on communication efficiency. We show the changes

n running time in our various accumulation strategies. Then we
how the communication efficiency among different approaches
entioned in Section 5.2.

. Experimental evaluation

In this section, we present an in-depth comparison of Tall-
Wide with other algorithms based on the performance metrics
entioned in the preceding section.

.1. Evaluation for a single DC

We first show the efficiency of our block-division method in
allnWide algorithm for a single DC. We show that TallnWide is
oth fast and scalable compared to the other methods.
Effect of Number of Blocks: In our implementation, we do not

ix the number of blocks for the division. Instead, we dynamically
hoose the number of blocks by this formula:

= ⌈(ρ ∗ D ∗ d ∗ 8)/(minMem ∗ 10242)⌉

here I is the number of blocks, ρ is the tuning parameter,
inMem is the least free memory (in MB) among working nodes.
able 3 shows the effect of ρ on the number of blocks for Ama-
onRating and Twitter10M datasets. Depending on ρ, the number
f blocks varies. In this table, the sizes of the blocks are shown
n approximate values. These sizes are measured during the run-
ime of the spark code by comparing the approximate free and
tilized memories observed before and after the generation of
single block of the PCA parameter, W . One point to be noted

hat these block sizes do not provide any direct indication of
he failure or success in execution rather they directly impact
he size of intermediate data generation. In order to ensure that
emory overflow error does not occur, we keep the block size
anageable. To do so, we keep the number of blocks to be larger

han a certain threshold value. However, if we work with more
locks, we have to encounter additional overheads for Disk I/O.
herefore, our goal is to minimize the number of blocks as much

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

T
C
m

w

9
5
7

able 4
omparison of running time (in sec) for TallnWide on different datasets against state-of-the-art library functions: MLlib-PCA, Mahout-PCA, and sPCA. For iterative
ethods, we consider running time to reach convergence (5% tolerance). For full Twitter dataset, we consider 1 iteration.
Datasets Size MLlib-PCA Mahout-PCA sPCA sSketch-PCA TallnWide

PubMed2K 8.2M × 2K 94.54 57.27 35.32 24.21 21.11
PubMed 8.2M × 141K Fail 19491.51 634.90 585.37 533.91
SiftFeature 4.5M × 128 107.09 1801.52 556.10 182.10 194.93
AmazonRating2K 6.6M × 2K 58.58 63.54 10.88 12.99 5.731
AmazonRating50K 6.6M × 50K Fail 2042.49 102.343 64.33 48.76
AmazonRating 21M × 9.8M Fail Fail Fail Fail 6339.77
Twitter1K 50K × 1K 26.63 22.86 1.18 1.12 1.10
Twitter10M 10M × 10M Fail Fail Fail Fail 2987.69
Twitter (1 iteration only) 50M × 50M Fail Fail Fail Fail 14687.62
Fig. 4. (a) Per iteration running time for all iterative methods. (b) Comparison of running time of iterative methods to converge (5% tolerance) for PubMed dataset.
I
t
T
z
5
p
f
i
t
d
t
a
w
p
o

as possible. In our observation, ρ = 30 yields the best result, so
e have used ρ = 30 for TallnWide. However, determining the

efficient value of ρ to keep the count of blocks minimum while
ensuring the mitigation of overflow error is out of the scope of
this paper and is kept as future work.

Running Times in a Single DC: To compare running times of
our method against all other techniques, we first show that as an
iterative method TallnWide takes less time to finish one iteration,
compared to other iterative methods. Later, we show that when
all the iterative techniques converge, TallnWide takes the least
amount of time as well. For each method, to get results faster and
reduce monetary cost, we consider deriving top 10 principal com-
ponents. Point to be noted that all the methods we consider for
comparison involve randomization in their approaches. This may
result in either a decent starting point, which tends to converge
earlier or any average starting point, which needs more iterations
to converge. For this reason, in order to maintain fairness among
the methods, we use per iteration time comparison.

Fig. 4(a) shows per iteration running times for all the it-
erative methods for all datasets (except Twitter1K for which
logarithmic running time is negative). In all cases, TallnWide
takes the least amount of time. For example, for AmazonRat-
ing50K dataset, TallnWide takes only 6.10 s while Mahout-PCA,
sPCA, and sSketch-PCA take 1021.25, 20.47, and 12.86 s respec-
tively. For other datasets, the results are similar. Furthermore,
when the number of dimensions is too high, Mahout-PCA, sPCA,
and sSketch-PCA fail to run. For example, for AmazonRating (D =
.8M), Twitter10M (D = 10M), and Twitter datasets (D =
0M), they fail, whereas TallnWide performs smoothly, and takes
42.47, 597.54, and 14687.62 s per iteration, respectively.
11
We now show that TallnWide takes less time for convergence.
n Fig. 4(b), running times of iterative methods to converge (5%
olerance) for PubMed dataset is shown. We can observe that
allnWide takes the least amount of time (evident from the
oomed segment) to converge compared to others (533.91 s vs
85.37, 634.90, and 19491.51 s) and offers 1.1 − 37× better
erformance. Table 4 shows full running times of all the methods
or all datasets. For Twitter, we show the results of the first
teration only (to reduce the monetary cost). Observe that, due
o the high dimension, MLlib-PCA fails to run on full PubMed
ataset. If we take a smaller dataset, TallnWide still takes less
ime. For example, for PubMed2K MLlib-PCA, Mahout-PCA, sPCA,
nd sSketch-PCA take 94.54, 57.27, 35.32, and 24.21 s to finish
hile TallnWide takes only 21.11 s (a factor of 1.2 − 4.5× im-
rovement). Results for other datasets are similar, and TallnWide
ffers better performance (1.1−42×) in running time in most of

the cases. However, only for the dense matrix SiftFeature, MLlib-
PCA takes the least time. It is because MLlib-PCA is a deterministic
algorithm, and it does not have any overhead for sparsity preserv-
ing calculation. However, here the dimension is relatively small,
which is not a case with big data, for which MLlib-PCA fails to
perform.

Scalability: TallnWide does not face out-of-memory error as
dimensions of data increase arbitrarily. To show this, we work
with different dimensions of Twitter datasets such as 1K , 2K , 4K ,
6K , 8K , 10K , 100K , 1M , 5M , 10M , 20M and 50M , and record the
memory consumption using Ganglia [54] for each method. Fig. 5
shows the result. As expected MLlib-PCA faces out-of-memory
error after 6K dimensions. Mahout-PCA and sPCA too face such
error after handling up to 5M dimensions while sSketch-PCA

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

s
5
d
w
s
a

g
R
b
m
w
m
u
(
t
n
t
s
o
g
f

.

Fig. 5. Memory consumption in one working node for all methods for Twitter
dataset.

can prolong its scalability further but eventually fails when the
dimension reaches close to 10M (from Table 4, we can see that
Sketch-PCA fails for datasets with dimension 9.8M , 10M , and
0M). However, due to the merit of block-division, TallnWide
oes not face such a problem. Thus, from this figure and Table 4,
e can say that TallnWide successfully handles up to 10× dimen-
ions which bears the testimony of our claim that it can handle
n arbitrarily large number of dimensions.
Intermediate Data Size: We measure intermediate data size

enerated by all the comparing algorithms for PubMed, Amazon-
ating50K, and SiftFeature datasets. We choose these datasets
ecause they allow other methods to run without facing out-of-
emory errors. Table 5 shows the experimental results. Along
ith the zero-noise model, which reduces the generation of inter-
ediate data, our TallnWide offers a significantly lower memory
tilization by providing a block division of the main parameter
principal subspace W). Although we may incur some compu-
ational overhead due to partitioning, the total running time is
ot impacted by that much as we showed earlier. From the
able, we can see, in case of MLlib-PCA, the intermediate data
ize grows very quickly and eventually goes beyond 150 GB for
ur all higher-dimensional datasets. It exceeds the total aggre-
ated memory of the cluster. Since the intermediate data size
or Mahout-PCA depends on the input row size N , which is
typically very big in our case, it also generates a lot of inter-
mediate data. For the PubMed dataset, Mahout-PCA, sPCA and
sSketch-PCA generate 3.65GB, 198MB and 151MB of intermediate
data respectively, whereas TallnWide generates only 131 MB, a
factor of 29×, 1.5×, and 1.2× reductions respectively. In case
of SiftFeature which has a row size of about 4 million but only
has 128 dimensions, we see our method offers a huge reduction
of memory compared to Mahout-PCA (0.67 GB vs 128 KB) and
also generates a slightly lower amount of intermediate data than
the closest competitors sPCA (143 KB vs 128 KB) and sSketch-PCA
(140 KB vs 128 KB).

8.2. Evaluation for geo-distributed DCs

We first describe three different accumulation strategies for
the implementation of Geo-Accumulation method in Algorithm 1.

• gSpark-Accumulation: This is a naïve strategy where we
implement the accumulation of the partial parameters in
a centralized approach using the out-of-the-box solution
12
Table 5
TallnWide is space-efficient. It produces less intermediate data than state-of-the-
art methods. For a fair comparison, we compare results with only those data
where other methods do not face memory issues.
Technique PubMed AmazonRating50K SiftFeature

MLlib-PCA ≥150GB ≥150GB 896KB
Mahout-PCA 3.65GB 1.05GB 0.67GB
sPCA 198MB 66MB 143KB
sSketch-PCA 151MB 53MB 140KB
TallnWide 131MB 45MB 128KB

Table 6
Comparison of running times (in sec) among different strategies (for single itera-
tion): gSpark-Accumulation, gHDFS-Accumulation, and TallnWide-Accumulation
Dataset gSpark-

Accumulation
gHDFS-
Accumulation

TallnWide-
Accumulation

AmazonRating 1547.14 1195.44 525.56
PubMed 212.45 180.13 137.34

provided by Spark. For this, we deploy Spark in the geo-
distributed environment, which we call gSpark. Our single
cluster for this accumulation scheme consists of 1 master
along with 14 slaves. The slaves are located at different (dis-
tant) geo-distributed locations. This accumulation method
demands the passing of raw data among the slaves in order
to achieve parallel computational capability.
• gHDFS-Accumulation: To avoid passing raw data, we discard

the centralized approach, and consider 3 instances from
each zone as a single DC. In each DC, we set up a Spark clus-
ter (1 master and 2 slaves). In addition, we set up another
Spark cluster taking all the master instances from each DC,
i.e., a cluster of masters, in order to accumulate the param-
eter only. After that, we deploy HDFS in a geo-distributed
fashion, which we call gHDFS. In this setting, each DC stores
partial results in gHDFS and notify the master of the cluster
of masters, or master of masters, to start accumulation. Mas-
ter of masters reads partial results from and stores the final
result in the same gHDFS. Since gHDFS is accessible from all
the DCs, each DC can read the accumulated parameter at the
beginning of the next iteration.
• TallnWide-Accumulation: In gHDFS, all DCs have one shared

file system which does not depict the real scenario of a
geo-distributed environment. So, now in our approach, we
discard gHDFS and cluster of masters. To do so, we make
the assumption that the masters from each DC are able to
communicate among themselves in a real application via
SSH for passing parameter only. We provide our custom
accumulation using the native file system, and Linux shell
script. All of the instructions for gSpark and gHDFS, and
code for all strategies are publicly available in the provided
GitHub link.

Running Times Among Accumulation Strategies: To keep
costs low, we use two datasets, namely AmazonRating and
PubMed, to validate the merit of TallnWide-Accumulation
scheme. Table 6 shows the results of the strategies for the datas-
ets. The results are shown for running one iteration only. No-
tice that since gSpark has to transmit and shuffle raw data,
gSpark-Accumulation is slow. gHDFS has additional overhead for
initialization and replication, and therefore gHDFS-Accumulation
takes longer time too. However, our final strategy, TallnWide-
Accumulation, operates faster because it does not need to pass
raw data and does not have any additional overhead and of-
fers 1.3 − 2.9× better performance than the other mentioned
strategies.

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710

i
o
D
W
b
m
(
a
D

B

F
1
s
e
a

s

9

a
w
P
t
h
f
g
s
y
t
p
f
o
h

D

c
t

A

S
n
G
(
c
p

R

Table 7
Average running time (in sec) needed for taking different DC as center using TallnWide-Accumulation
strategy. Statistics is shown for AmazonRating and PubMed datasets.

Approach 2 Approach 3

Dataset Ireland North
Virginia 1

North
Virginia 2

Oregon 1 Oregon 2
(Ideal)

AmazonRating 594.34 537.57 542.56 546.45 525.56
PubMed 158.31 138.55 141.53 149.44 137.34
Communication Efficiency Across Different Approaches: Us-
ng TallnWide-Accumulation strategy, we now establish the merit
f using Eq. (13) for Approach 3 (Efficient Order w/ Ideal Central
C) over Approach 2 (Efficient Order) in Fig. 2 mentioned in 5.2.
e do not experimentally validate Approach 1 (Trivial Order)
ecause of straightforward observation and cutting down the
onetary cost of running EC2 instances. Table 2 shows the B/W

a symmetric matrix) between every pair of DCs. From this table
nd Eq. (13), we derive the slowest B/Ws for all masters from each
C:

/Wmin = {9.25, 11.35, 10.95, 9.25, 11.60}

or Oregon 2, we get the maximum from this set which is
1.60MB/s. So, using Oregon 2 as the central DC for accumulation
hould yield a faster result. From Table 7, we see that this is
xactly the case i.e. for both the datasets, Oregon 2 takes the least
mount of time.
To summarize, our results show that TallnWide offers high

calability and better performance than its competitors.

. Conclusions

In this paper, we have proposed a new algorithm, referred to
s TallnWide, to meet the challenges of geo-distributed tall and
ide big data. We have devised a block-division EM algorithm for
CA, and we have demonstrated that compared to the state-of-
he-art techniques, our method is highly scalable (handles 10×
igher dimension) and offers better performance (1.1 − 42×
aster). We also give a better solution in our algorithm for the
eo-distributed environment. We show that our accumulation
trategy, coupled with our communication efficient calculation
ields up to 2.9× faster result than other alternatives. In fu-
ure, we intend to give an optimal block-partition scheme and
rovide a technique for perturbation of values of the parameter
or privacy preservation. For reproducibility and extensibility of
ur work, we make the source code of TallnWide available at
ttps://github.com/tmadnan10/TallnWide.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research was conducted at the Department of Computer
cience and Engineering (CSE), Bangladesh University of Engi-
eering and Technology (BUET) and supported by CASR Research
rant from Bangladesh University of Engineering and Technology
BUET). The authors also thank the reviewers for their valuable
omments for improving the presentation and strenght of the
aper.

eferences

[1] Haewoon Kwak, Changhyun Lee, Hosung Park, Sue Moon, What is twitter, a
social network or a news media? in: Proceedings of the 19th international
conference on World wide web, 2010, pp. 591–600.
13
[2] Julian McAuley, Amazon product data. (2014), 2014.
[3] Moshe Lichman, et al., UCI machine learning repository, 2013.
[4] Jianqing Fan, Fang Han, Han Liu, Challenges of big data analysis, Natl. Sci.

Rev. 1 (2) (2014) 293–314.
[5] Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, Hyun-Ah Song, Partha Pra-

tim Talukdar, Nicholas D. Sidiropoulos, Christos Faloutsos, Tom Mitchell,
Efficient and distributed algorithms for large-scale generalized canonical
correlations analysis, in: 2016 IEEE 16th International Conference on Data
Mining (ICDM), IEEE, 2016, pp. 871–876.

[6] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, Samee Ullah Khan, The rise of big data on cloud
computing: Review and open research issues, Inf. Syst. 47 (2015) 98–115.

[7] Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon, Communication-efficient distributed
block minimization for nonlinear kernel machines, in: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017, pp. 245–254.

[8] Christopher M. Bishop, Pattern Recognition and Machine Learning,
springer, 2006.

[9] Chris Ding, Xiaofeng He, K-means clustering via principal component
analysis, in: Proceedings of the twenty-first international conference on
Machine learning, 2004, p. 29.

[10] Baolin Guo, Chenping Hou, Feiping Nie, Dongyun Yi, Semi-supervised
multi-label dimensionality reduction, in: 2016 IEEE 16th International
Conference on Data Mining (ICDM), IEEE, 2016, pp. 919–924.

[11] Qiang Wang, Vasileios Megalooikonomou, A dimensionality reduction tech-
nique for efficient time series similarity analysis, Inf. Syst. 33 (1) (2008)
115–132.

[12] Qian Du, James E. Fowler, Hyperspectral image compression using
jpeg2000 and principal component analysis, IEEE Geosci. Remote Sensing
Lett. 4 (2) (2007) 201–205.

[13] Josep M. Porta, Jakob J. Verbeek, Ben J.A. Kröse, Active appearance-based
robot localization using stereo vision, Auton. Robots 18 (1) (2005) 59–80.

[14] Alexander N. Gorban, Balázs Kégl, Donald C. Wunsch, Andrei Y. Zinovyev,
et al., Principal Manifolds for Data Visualization and Dimension Reduction,
vol. 58, Springer, 2008.

[15] Apache Mahout, What is apache mahout?, copyright© 2014 the apache
software foundation, licensed under the apache license, version 2.0.

[16] Xiangrui Meng, Mllib: Scalable machine learning on spark, in: Spark
Workshop April, 2014.

[17] Tarek Elgamal, Maysam Yabandeh, Ashraf Aboulnaga, Waleed Mustafa,
Mohamed Hefeeda, spca: Scalable principal component analysis for big
data on distributed platforms, in: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, 2015, pp. 79–91.

[18] Md Mehrab Tanjim, Muhammad Abdullah Adnan, ssketch: A scalable
sketching technique for pca in the cloud, in: Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, 2018, pp.
574–582.

[19] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, Dmitriy Ryaboy, The
unified logging infrastructure for data analytics at twitter, 2012, arXiv
preprint arXiv:1208.4171.

[20] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,
Aditya Akella, Paramvir Bahl, Ion Stoica, Low latency geo-distributed data
analytics, ACM SIGCOMM Comput. Commun. Rev. 45 (4) (2015) 421–434.

[21] Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut, Jitu
Padhye, George Varghese, Global analytics in the face of bandwidth
and regulatory constraints, in: 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15), 2015, pp. 323–336.

[22] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut,
Konstantinos Karanasos, Jitendra Padhye, George Varghese, Wanalytics:
Geo-distributed analytics for a data intensive world, in: Proceedings of
the 2015 ACM SIGMOD international conference on management of data,
2015, pp. 1087–1092.

[23] Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave De Maagd, Alex
Feinberg, Phanindra Ganti, Lei Gao, Bhaskar Ghosh, Kishore Gopalakrishna,
Brendan Harris, et al., Data infrastructure at linkedin, in: 2012 IEEE 28th
International Conference on Data Engineering, IEEE, 2012, pp. 1370–1381.

[24] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit
Jain, Joydeep Sen Sarma, Raghotham Murthy, Hao Liu, Data warehousing
and analytics infrastructure at facebook, in: Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, 2010, pp.
1013–1020.

https://github.com/tmadnan10/TallnWide
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb3
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb4
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb4
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb4
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb5
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb6
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb6
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb6
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb6
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb6
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb8
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb8
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb8
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb10
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb10
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb10
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb10
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb10
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb11
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb11
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb11
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb11
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb11
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb12
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb12
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb12
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb12
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb12
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb13
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb13
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb13
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb14
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb14
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb14
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb14
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb14
http://arxiv.org/abs/1208.4171
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb20
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb20
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb20
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb20
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb20
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb23

T.M.T. Adnan, M.M. Tanjim and M.A. Adnan Information Systems 98 (2021) 101710
[25] Sam T. Roweis, Em algorithms for pca and spca, in: Advances in Neural
Information Processing Systems, 1998, pp. 626–632.

[26] Apache Spark, Apache spark: Lightning-fast cluster computing, 2016, pp.
2168–7161, URL http://spark.apache.org.

[27] Olivia Choudhury, Yoonyoung Park, Theodoros Salonidis, Aris Gkoulalas-
Divanis, Issa Sylla, et al., Predicting adverse drug reactions on distributed
health data using federated learning, in: AMIA Annual Symposium Pro-
ceedings, vol. 2019, American Medical Informatics Association, 2019, p.
313.

[28] Jie Xu, Fei Wang, Federated learning for healthcare informatics, 2019, arXiv
preprint arXiv:1911.06270.

[29] European Union Directive, Payment services (PSD 2) - directive, 2014,
URL https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-
2015-2366_en.

[30] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Qiang Yang,
Secureboost: A lossless federated learning framework, 2019, arXiv preprint
arXiv:1901.08755.

[31] Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, Cheng-Zhong Xu, Ffd:
A federated learning based method for credit card fraud detection, in:
International Conference on Big Data, Springer, 2019, pp. 18–32.

[32] Shiva Raj Pokhrel, Towards efficient and reliable federated learning using
blockchain for autonomous vehicles, Comput. Netw. (2020) 107431.

[33] Ahmet M. Elbir, Sinem Coleri, Federated learning for vehicular networks,
2020, arXiv preprint arXiv:2006.01412.

[34] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise
Aguera y Arcas, Communication-efficient learning of deep networks from
decentralized data, in: Artificial Intelligence and Statistics, 2017, pp.
1273–1282.

[35] Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, Dave Bacon, Federated learning: Strategies for
improving communication efficiency, 2016, arXiv preprint arXiv:1610.
05492.

[36] Robin C. Geyer, Tassilo Klein, Moin Nabi, Differentially private federated
learning: A client level perspective, 2017, arXiv preprint arXiv:1712.07557.

[37] Syeda Nahida Akter, Muhammad Abdullah Adnan, Weightgrad: Geo-
distributed data analysis using quantization for faster convergence and
better accuracy, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 546–556.

[38] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gre-
gory R. Ganger, Phillip B. Gibbons, Onur Mutlu, Gaia: Geo-distributed
machine learning approaching {LAN} speeds, in: 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17), 2017, pp.
629–647.
14
[39] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen,
Hai Li, Terngrad: Ternary gradients to reduce communication in distributed
deep learning, in: Advances in Neural Information Processing Systems,
2017, pp. 1509–1519.

[40] Simo Puntanen, George P.H. Styan, Jarkko Isotalo, Eigenvalue decompo-
sition, in: Matrix Tricks for Linear Statistical Models, Springer, 2011, pp.
357–390.

[41] Gene H. Golub, Charles F. Van Loan, Matrix Computations, Vol. 3, 2012.
[42] Jonathon Shlens, A tutorial on principal component analysis, 2014, arXiv

preprint arXiv:1404.1100.
[43] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Finding structure with

randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM Rev. 53 (2) (2011) 217–288.

[44] Ninh Pham, Rasmus Pagh, Fast and scalable polynomial kernels via explicit
feature maps, in: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2013, pp. 239–247.

[45] Nathan P. Halko, Randomized Methods for Computing Low-Rank Approx-
imations of Matrices (Ph.D. thesis), University of Colorado at Boulder,
2012.

[46] Michael E. Tipping, Christopher M. Bishop, Probabilistic principal com-
ponent analysis, J. R. Stat. Soc. Ser. B Stat. Methodol. 61 (3) (1999)
611–622.

[47] Facebook Research, Fast randomized svd, 2014, URL https://research.fb.
com/fast-randomized-svd.

[48] Tarek Elgamal, Mohamed Hefeeda, Analysis of pca algorithms in distributed
environments, 2015, arXiv preprint arXiv:1503.05214.

[49] Alexander Smola, Shravan Narayanamurthy, An architecture for parallel
topic models, Proc. VLDB Endow. 3 (1–2) (2010) 703–710.

[50] Yun Seong Lee Lee, Markus Weimer, Youngseok Yang, Gyeong-In Yu,
Dolphin: Runtime optimization for distributed machine learning, in: Proc.
of ICML ML Systems Workshop, 2016.

[51] Benoit Dageville, Bhaskar Ghosh, Rushan Chen, Thierry Cruanes, Mohamed
Zait, Parallel partition-wise aggregation, August 17 2010, US Patent 7, 779,
008.

[52] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, Li Fei-Fei, Imagenet:
A large-scale hierarchical image database, in: 2009 IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, 2009, pp. 248–255.

[53] David G. Lowe, Object recognition from local scale-invariant features, in:
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, IEEE, 1999, pp. 1150–1157.

[54] Matthew L. Massie, Brent N. Chun, David E. Culler, The ganglia dis-
tributed monitoring system: design, implementation, and experience,
Parallel Comput. 30 (7) (2004) 817–840.

http://refhub.elsevier.com/S0306-4379(20)30152-6/sb25
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb25
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb25
http://spark.apache.org
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb27
http://arxiv.org/abs/1911.06270
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
http://arxiv.org/abs/1901.08755
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb31
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb31
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb31
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb31
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb31
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb32
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb32
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb32
http://arxiv.org/abs/2006.01412
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1712.07557
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb39
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb40
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb40
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb40
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb40
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb40
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb41
http://arxiv.org/abs/1404.1100
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb43
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb43
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb43
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb43
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb43
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb45
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb45
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb45
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb45
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb45
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb46
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb46
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb46
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb46
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb46
https://research.fb.com/fast-randomized-svd
https://research.fb.com/fast-randomized-svd
https://research.fb.com/fast-randomized-svd
http://arxiv.org/abs/1503.05214
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb49
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb49
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb49
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb52
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb52
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb52
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb52
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb52
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb53
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb53
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb53
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb53
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb53
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb54
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb54
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb54
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb54
http://refhub.elsevier.com/S0306-4379(20)30152-6/sb54

	Fast, scalable and geo-distributed PCA for big data analytics
	Introduction
	Motivation
	High dimensionality with sparsity
	PCA on geo-distributed datasets

	Technical background
	Eigen value decomposition
	Singular value decomposition
	Stochastic SVD
	Probabilistic PCA

	Related works
	MLlib-PCA
	Mahout-PCA
	sPCA
	sSketch-PCA
	Geo-distributed analytics and large parameter

	Our proposed algorithm: TallnWide
	Handling tall and wide big data
	Communication efficient calculation
	Validation of zero-noise-limit probabilistic PCA

	Algorithm and complexity analysis
	Algorithm description
	Complexity analysis

	Experimental design
	Spark implementation
	Algorithms compared
	Datasets
	Cluster configuration
	Performance metrics

	Experimental evaluation
	Evaluation for a single DC
	Evaluation for geo-distributed DCs

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

