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Abstract News and information spread faster than ever, thanks to social media.
The impact can be twofold: (i) efficient spreading of important information (e.g.,
public awareness, important alerts) can be extremely beneficial while (ii) quick
spreading of wrong content (e.g., fake news, violent content) is alarming. Finding
social media users who are the most influential at spreading information can be
helpful for both cases. Existing accurate methods for finding the most influen-
tial spreaders use the global view of the network and require a single machine to
process the entire data. Nowadays, with the growth of gigantic social networks,
these methods are neither efficient (takes a long time) nor feasible (limitation of
memory). Few existing methods only require local information of the network, but
lack accuracy. Today, the popularity of social media allows us to collect rich user-
specific information that can guide us towards designing more effective methods.
In this study, we propose UACD, a novel method of identifying the most influential
spreaders on Twitter social network by incorporating the user-specific information
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(extracted from his/her Twitter account) to the topological information. We pro-
vide a distributed implementation of our proposed algorithm on the Amazon EC2

cluster and observe that the algorithm is scalable and can process a significantly
large network. We compare our ranking result with that of the state-of-the-art
methods using widely accepted metrics of ranking comparison and our experimen-
tal results indicate that our new method is on an average 12.5% more accurate
and can produce the result in 175× less time.

Keywords Influential spreader · k-core decomposition · distributed implementa-
tion · centrality measures

1 Introduction

Social media has gained remarkable popularity in the past few decades [20, 22,
28, 31]. The users like to discuss a diverse range of topics in social media, and
generate a massive amount of data. According to Forbes magazine, “Social media
has become the main source of news online with more than 2.4 billion internet
users, nearly 64.5 percent receive breaking news from Facebook [67], Twitter [48],
YouTube [16], Snapchat [10] and Instagram [41] instead of traditional media” [63].
Thus, today, social media plays a significant role in the diffusion of information [8].
Twitter, a micro-blogging service, is one of the most popular social media that
allows people to share their ideas, opinions, and news with a large number of
people in the network. Capturing, analyzing, and interpreting the information from
social media has been an active research area [1, 26], popularly known as social

media analytics. Twitter is very popular for researchers for its popularity and
data availability. Many analyses have been done on Twitter data including but
not limited to information credibility analysis [18], sentiment analysis [34], spam
detection [11], and identification of the most influential spreaders [75,87].

Information diffusion offers a widespread research area, and even researchers
from different fields such as physics, biology, etc. are attracted to find out the
insights of this area. Information diffusion has been studied for centuries in order
to find out how innovation is spread over a network [58] and how contagious
diseases are spread over any population [7,38,44]. It is highly possible to expedite
the diffusion of beneficial information, obstruct or at least delay the spread of
diseases, and accelerate the awareness among people by identifying the spreading
pathways over any social network. According to Guille et al. [35], the information
diffusion is studied based on three fundamental focus: (i) identifying the mostly
diffused information or topic, (ii) identifying the process, reason, and pathways
of information diffusion during the past, and also prediction of the future, (iii)
identification of the members on the network who play the most important roles in
this diffusion process. In this paper, we mainly concentrate on the third focus.

Identifying the most influential spreaders in a network is critical for ensur-
ing efficient diffusion of information, which allows spreading awareness during
the outbreak of any kind of epidemic [23, 77], successful e-commercial advertise-
ments [50,56], optimize the use of limited resources to facilitate information prop-
agation [21], etc. It can also help to prevent fake news propagation [53], and
controlling the spread of infectious diseases [7]. In a large social network graph,
the nodes having the largest degree are often considered as the most influential
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spreaders [76]. However, another important factor for a user’s high spreadability
is that he/she belongs to a cohesive community. The cohesiveness of a community
is typically measured by k–core [80], which indicates how strongly the members
of the community are connected. Briefly, the value of k in a k–core indicates the
minimum number of edge removals required to disconnect a connected k–core. In
general, a centrality measure is used to identify the most influential spreaders on a
social network [25]. Such measures can be broadly classified into two kinds: global
and local. Local measures take into account the local information of a node only
(i.e., the neighborhood of the considering node) while global centrality measures
consider the whole network structure during the centrality measurement of each
node.

Initially, Borgatti et. al. [14] introduced the local measure degree centrality to
model the spreadability of a user. Later, Kitsak et al. [46] suggest that the most
efficient spreaders are located within the core of the network where the core can
be identified using the k–core decomposition. Liu et al. [54] propose a more ef-
ficient method of using k–core decomposition by removing the unnecessary links
which have a low diffusion significance. Another improved method was proposed
by Wang et al. [86] who used k–core iteration factor as a tie-breaker of nodes with
the same k value to evaluate the influence capability of a node. Local centrality
measures, like, degree centrality [14] and k–core decomposition [45] are generally
faster and more feasible, but less effective. They fail to find the most influential
spreaders accurately because of omitting the global structure of the network. On
the other hand, global measures such as betweenness centrality [68] and closeness
centrality [72] are more accurate in finding the influential nodes in a network.
However, global centrality measures require a single centralized machine to hold
the entire network data and process them to generate the result which makes
them very expensive in terms of both time and memory. Despite being more accu-
rate, global measures are neither efficient nor feasible for very large networks like
Facebook [67], and Twitter [48].

Additionally, the current literature only uses the network topology to find the
influential spreaders and completely ignores the user-specific information (beyond
the available social graph), which can play a vital role in information spreading.
With the popularity of social media, it is possible to gather a surprising amount of
user-specific information that may lead to more accurate techniques for finding the
most influential spreaders. Inspired by this idea, we propose a novel method, UACD –
User Attributed Core Decomposition – which identifies a new measure, UACN – User
Attributed Core Number – which considers user-specific information to compute
the spreadability of a user in the network. We provide intuitive arguments behind
choosing each of our selected user-specific attributes. We rank the users according
to their spreadability computed by our UACN measure and generate the ranks of
the same users using each of the state-of-the-art methods. To generate the golden
ranking (most accurate), we use the SIR (Susceptible-Infected-Recovered) epidemic
model [83], which simulates the whole structure of the network for modeling the
spread of infectious diseases in the network. As discussed earlier, the disadvantage
of methods which run on the global structure of the network, is their inefficiency to
process large networks. Therefore, we simulate a network generated from a small
dataset on the SIR model to find out the actual most influential spreaders. We uti-
lize widely accepted metrics like Jaccard Index [13], Kendall Tau Correlation

Coefficient [71], Spearman’s Rank Correlation Coefficient [3], Normalized
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Discounted Cumulative Gain [43] to compare our ranking as well as the rankings
generated by the state-of-the-art methods with the golden ranking. The experi-
mental evaluation suggests that our proposed method is 12.5% more (on average)
accurate than any of the local methods while generating the results in a 175×
faster running time (on average) than our evaluating popular global methods.

Our method only requires local information (i.e., information of the node and
its neighbors) making it suitable for a distributed setting, which helps to meet the
objective of finding more accurate results in less time. We incorporate our measure
with a distributed implementation of k–core decomposition [4] to find the most
influential spreaders in Twitter social network. We deploy the implementation
on Amazon EC2 Platform [6] and demonstrate how our proposed technique scales
with the increment in cluster size. We observe that our algorithm can process large
datasets (consisting of 41.7M Twitter users) in a reasonable time.

In summary, we make the following contributions:

– We propose a novel measure of finding the most influential spreaders on Twitter
social network [48] which incorporates the user specific information with the
traditional core value obtained by the more conventional k–core decomposition
method. We refer to our measure as UACN: User Attributed Core Number and
our measuring method as UACD: User Attributed Core Decomposition.

– Our proposed measure only uses the local information of the nodes (users),
while being able to maintain at least the same accuracy as the global measures.

– To the best of our knowledge, we are the first to incorporate user-specific
information into the network topology in order to find the most influential
spreaders on a large social network.

– We evaluate our newly proposed UACD on three real Twitter datasets. We com-
pare the performance against the currently available measures of finding the
most influential spreaders on a social network. Our experimental result indi-
cates that our new method is able to provide on average mathbf12.5% bet-
ter accuracy than the existing metrics and methods while being on average
mathbf175× faster.

– The proposed measure is suitable for a distributed setting since it requires
only local information of each of the nodes. A distributed implementation of
our method on the Amazon EC2 Cluster [6] shows that the method is scalable
and can process a significantly large network.

The rest of the paper is organized as follows. We introduce a brief technical
background in Section 2. Section 3 discusses the state-of-the-art methods of finding
the most influential spreaders on a social network. We present the methodology of
our study in Section 4. In Section 5, we discuss the metrics used to evaluate our
proposed method. We present our experimental setup in Section 6 and evaluate
our proposed method in Section 7. Section 8 demonstrates the performance of our
method in a distributed environment (Amazon EC2). Finally, we mention some
potential scopes of improvement in Section 9, and conclude the paper in Section
10.

2 Technical Background

In recent years, the number of users of social network sites have been increased
by a large scale. People now can publish their statuses and get connected with
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other users which we can refer to as social relationship [33]. As we have already
discussed in the earlier section, we can formally represent an online social network
using a graph, where each user is represented by a node of the graph and the social
relationships among them are represented by edges (directed or undirected) [70].
In this graph, the nodes play an important role to disseminate information. This
knowledge of node spreadability is very significant while it comes to develop an effi-
cient method of accelerating the spreading in the case of information diffusion [58]
as well as decelerate it in the case of diseases [38, 44]. Therefore, in recent years,
the microscopic study of spreadability for each node has caught attention of the
researchers. Moreover, it can be very useful in case of finding out the initial spread-
ers of a contagious disease [7] or any information [32]. In this section, we define
some terminologies related to our work and then we provide a brief description
of the existing techniques of finding the most influential spreaders in a network.
Finally, we discuss the SIR model [83] which we use to evaluate the merit of our
proposed technique.

2.1 Twitter Social Network

Twitter allows users to publish tweets containing short texts (within 140 charac-
ters) and/or multimedia content. Twitter employs the “following” model, where
each user is allowed to choose who he/she wants to follow without seeking any per-
mission. The user who is following the tweets of another user is called a “follower”
while the other user is called his/her “friend”. In this way, the users of Twitter form
a social network with their friend-follower relationship. Typically, such networks
are conceptualized as a graph, i.e. a set of vertices (or nodes) representing the
users of the social network and a set of edges representing the social relationship
among the vertices. In this study, we model the Twitter network using the Friend-
Follower graph, where a vertex represents a user, and there exists a directed edge
from vertex u to vertex v if and only if the user represented by v is a follower of the
user represented by u. This also implies that the user represented by u is a friend
of the user represented by v. For simpler modeling, these directed edges are often
considered undirected. Figure 1 shows a simple friend-follower graph of Twitter
social network. Here every node is labeled with the name of the user along with
the Twitter screen name. The bidirectional edges are shown in bold lines implying
the two users represented by the incident vertices are following one another.

2.2 Centrality Measurement

In graph theory, centrality is a term to describe the importance of an individual
vertex within a graph or a network. Centrality measures [25] were initially de-
veloped for social network analysis since it helps answering the question, “Which
vertices are the most influential in a graph?” The popular centrality measures for
such analysis can be divided into two types: local centrality measures and global
centrality measures, briefly described below.
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Fig. 1: Sample Friend-Follower Graph of Twitter Social Network

2.2.1 Local Centrality Measures

To compute the centrality of a node, local measures generally use the information
of a node and its neighborhood only. The number of neighbors (degree of a node)
plays the main role in such local measures and they are more suitable for networks
modeled as undirected graphs. The two most popular local centrality measures are
described below:

i) Degree Centrality: Among all the centrality measures, Degree central-
ity [25] is the simplest one. It assumes the nodes with maximum number of neigh-
bors to be the most influential in the network. If, G(V,E) is a graph with the set
of vertices, V and the set of edges, E, then the degree of a vertex v can be denoted
by dv, and is defined as the total number of edges incident to it (i.e., the number of
neighbors of v). Now, if the number of vertices, |V | is n, then the degree centrality
of node v is:

DC(v) =
dv

(n− 1)
(1)

Here (n − 1) is used to normalize the value of degree centrality within 0 and
1. The most important reason for using degree centrality for finding the most in-
fluential spreaders is its simplicity and low computational complexity. However,
this measure typically fails to identify the most influential spreaders accurately.
Despite this, there are several cases where degree centrality can provide surpris-
ingly good performance. For example, if the spreading rate is very small, degree
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Fig. 2: A simple network with core numbers (k) of the nodes

centrality is reported to perform better in finding the spreadability of nodes than
other well-known centrality measures [47,52].

ii) K-Core Decomposition: In case of degree centrality, the number of neigh-
bors is solely responsible in determining the the influence of any node in the net-
work. Later Kitsak et al. [46] determined that the location of the nodes in the
network can impact more significantly in their spreadability. They identified that
nodes located at he center of the network possess higher probability to be the most
significant spreaders in a network than the nodes located at the perimeter of the
network. To sum up, they suggested that the core number of a node should be
considered as a more suitable measure in order to identifying the most influential
spreaders of the network, and this core number can be determined by the k–core
decomposition [5, 27] of the network.

At the very beginning of the k–core decomposition method, all the nodes with
degree 1 are removed. This process is recursively continued until no node with
degree 1 is remaining in the network. These removed nodes are grouped together
to form 1–core. After that, in a similar way, all the nodes with residual degree 2
are removed recursively until no node with degree 2 is remaining in the network.
All these removed node are then grouped together to form 2–core. This process is
continued until all the nodes are assigned to some core group. In this conventional
k–core decomposition method, nodes having the largest core number are considered
to be located at the center of the network and they are assumed to have the most
spreadability. Figure 2 presents a simple network and the core number for the
nodes.

The drawback of k–core decomposition method is that it has a tendency to
assign the same core number (k value) to multiple nodes in case of large networks.
Therefore, we may end up having a huge number of nodes as the most influ-
ential spreaders, which may not be a desired outcome in many cases. However,
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the simplicity and lower computational complexity make this measure very use-
ful. We suggest that incorporating user-specific information while computing the
core decomposition helps to find the influential spreaders more accurately. Based
on this, we propose User Attributed Core Decomposition (UACD) method, and
show that our proposed method significantly improves the accuracy without in-
curring noticeable computational overhead.

2.2.2 Global Centrality Measures

Global measures consider the whole network topology while computing the central-
ity of the nodes. Some of the most popular global centrality measures are briefly
described below:

i) Closeness Centrality: Closeness centrality [25] is a measurement which
identifies the closeness of a node from all the other nodes in the network. If the
network can be represented by a connected graph, then the normalized version of
closeness centrality of any node u of the graph is calculated as the average of all
the shortest paths between u and all other nodes of the network.

Let lij be the length of shortest path between any two nodes (vi, vj), and n be
the number of nodes in the network, then the average shortest distance of node vi
from all other nodes i.e. closeness centrality can be defined as [79],

Lvi =
1

n− 1

∑
i6=j

lij (2)

The closeness centrality of node vi can be thought as the inverse of the average
shortest distance, Li and defined as,

CC(vi) =
1

Lvi

=
n− 1∑
i6=j lij

(3)

However, this equation will not be suitable to use for a disconnected graph
where some nodes may be unreachable from a node vi. For graphs with multiple
connected components, Wasserman and Faust [73] revise the definition of closeness
centrality. The closeness centrality of node vi is now measured as the ratio of
“the fraction of the nodes in the network which are reachable from vi”, to the
“average shortest distance of vi from the reachable nodes”. Let ni be the number
of reachable nodes in the network from node vi, then the modified formula of
measuring closeness centrality is,

CC(vi) =
ni − 1

n− 1

ni − 1∑
i6=j,vj is reachable from vi

(lij)
(4)

ii) Betweenness Centrality: Betweenness centrality [25] determines how
many times a node falls along the shortest path between two different nodes (i.e.,
acts as a bridge between those two nodes). Linton Freeman [30] introduces this
measure for quantifying the control of a user on the communication between other
users in a social network.

Let vs, vf , and vi are three different nodes in a network represented by G(V,E).
Now we define ni

sf = 1 if node vi lies on the shortest path between vs and vf , and
0 otherwise. The betweenness centrality of node vi is defined as:
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BC(vi) =
∑

(s,f)∈V
ni
sf (5)

However, there can be more than one shortest path between vs and vf and
that may count a node for centrality measure more than once. For this reason, if
total number of shortest paths between vs and vf is gsf , the equation for finding
betweenness centrality of node vi is updated as,

BC(vi) =
∑

(s,f)∈V

ni
sf

gsf
(6)

iii) Eigenvector Centrality: Eigenvector centrality [25] computes the cen-
trality of a node in a network based on the centrality of its neighbors. The weights
of the neighbors are assigned in such a way that a high scoring neighbor contributes
more to the centrality of the node. Assume that, a graph G(V,E) is represented by
an adjacency matrix A = {aij}, where {aij} = 1 if nodes vi and vj are neighbors
and 0 otherwise. If λ is the eigenvalue of graph G, the eigenvector centrality for
node vi is the ith element of the vector ~x defined by the equation:

A~x = λ~x (7)

There can be multiple eigenvalues i.e. multiple values of λ and for which mul-
tiple solutions can be found. However, for the largest eigenvalue of the adjacency
matrix A, according to the Perron–Frobenius theorem, there exists a unique solu-
tion of x which contains all positive entries [69].

2.3 Susceptible-Infected-Recovered (SIR) Model

The SIR model [83] is one of the widely used models in epidemiology. In an SIR
model, a node in the network can be at one of the three states: Susceptible, In-
fected, and Recovered. For better understanding, we explain these states using
“people” instead of “nodes”.

– S (Susceptible): The group of people who have not been infected with the
disease yet. Additionally, they are not immune to the disease, and therefore,
they are under the threat of being infected in the future.

– I (Infected): The group of people who have already been infected with the
disease. Moreover, they can transmit the disease to the susceptible neighbors
with a probability of β.

– R (Recovered): The group of people who have either recovered from the disease
or dead. The recovered people are immune to the disease and no longer can
transmit the disease to the susceptible neighbors.

The SIR model can simulate the spread of an infectious disease based on the
topology of the network and two parameters: infection rate (β) and recovery rate
(γ). The simulation stops when the network has no more infected nodes.

The SIR model is capable of finding the spreadability of a node accurately
by considering the node as the only infected node at the beginning, running the
simulation multiple times, and considering the average. If the network contains n
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nodes, one needs to simulate the entire network n times (with multiple runs) to
find the spreadability of all the nodes. Although this is the most accurate method
of finding the most influential spreaders, it is not realizable for a large network
due to its high computational cost.

3 Related Works

In this section, first, we show some existing methods that use the previously dis-
cussed measures to find the most influential spreaders on a social network. The
later part of this section presents the significance of distributed analysis of large
networks to assess the spreadability of the nodes as well as shows some currently
existing approaches to perform this in distributed platforms.

3.1 Basic Centrality Measures and k–core decomposition

It is generally believed that the most connected nodes (higher degree centrality)
and nodes with high betweenness centrality are the most influential nodes in the
network. However, Kitsak et al. [17, 46] proposed that the k-core decomposition
(also known as the k-shell decomposition) method performs better in identifying
the best individual spreading nodes in the network. The k–core decomposition
method assigns a core index ks to each of the nodes in the network. Nodes having
the lowest ks value are located at the edge of the network. On the other hand,
nodes with the highest ks value are located at the center of the network and are
assumed to possess the maximum spreadability.

3.2 PageRank and Related Improvements

Cataldi et al. [19] proposed a method of finding the distribution of influence of
nodes across the overall network by using the well known PageRank algorithm [74].
Each node is assigned a PageRank value in proportion to the probability that the
node is visited during a random walk (set of nodes) of the network. However
this approach only uses the topology of the network ignoring other significant
properties such as the native features of the nodes and their way of processing the
information. In case of directed networks, a simple variant of PageRank has been
proposed by Lü et al. [57], namely the the LeaderRank. LeaderRank introduced a
bidirectional link connected with every node in the network. This newly introduced
node is named as a so-called ground node, and a standard random walk is applied
to the updated network in order to find out the influential spreaders. LeaderRank
was further improved by Li et al. [51] where they allowed nodes to have more fans
from the ground node to get more scores. They named this updated version as
WeightedLeaderRank which performs better than the traditional LeaderRank
with almost similar convergence speed.
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Table 1: Summary of influential spreaders identification methods

Algorithm
Network
Topology

User
Info

Topic
Info

Distributed

PageRank

Topic-sensitive PageRank

IP

Topical Authorities

HybridRank

UACD

3.3 TwitterRank

Romero et al. [78] proposed IP(i.e. Influence-Passivity), which assigns every node
(user) two scores; i) a relative influence score and ii) a passivity score, accord-
ing to their ratio of forwarding information. This approach is similar to the well
known HITS algorithm [29]. However, there is no such concept of universal influ-
encer, rather it is pragmatic that each individual is influential in one some specific
knowledge domain(s). Therefore, Pal et al. [75] proposed a topic sensitive method
by defining a set of nodal and topical features, which characterize each members of
the network. Now, by using probabilistic clustering method over this defined fea-
ture space, they identified the most influential spreaders on a given topic. Another
topic-driven algorithm based on PageRank was developed by Weng et al. [87]
solely for Twitter, namely TwitterRank, where they identified Homophily in a
community of Twitter. In this way, they identified the topic-sensitive influence
among the twitterers.

3.4 HybridRank

Ahajjam et al. [2] present a new measure of centrality in a network namely, hy-
brid centrality to find the most influential spreader. They calculate an improved
version of coreness centrality (ICC) and the eigenvector centrality (EC) to com-
bine them to generate their proposed hybrid centrality. Their proposed hybrid
centrality measure of a node v is defined as follows:

HC(v) = ICC(v)× EC(v) (8)

Where ICC(v) is defined as:

ICC(v) =
∑

u∈Nei(v)

C(u)

Here they associate the coreness of the neighbors’ nodes to find the improved
coreness of node v i.e. the centrality of a node is relatively higher if its neighbors
are highly central.

All these methods described are summarized in Table 1. We can see that no
single method combines the network topology and the user info while finding
the most influential spreaders on a network. On top of that, none of the above
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approaches has a proper distributed implementation. Approaches that tend to
use the global topology for each of the nodes to find out its spreadability on the
network, incur a high amount of computational time which makes them infeasible
to use in practice. Our proposed Modified User Attributed Code Decomposition
is based on the simplest approach for finding influential spreaders, the k-core
decomposition which considers the network topology as well as the user specific
information like number of followers, number of friends, whether the user is verified,
etc. On top of that, we propose a distributed variant of the algorithm on a popular
cloud computing platform Amazon AWS.

3.5 Distributed k–core Decomposition

Batagelj et al. [9] provided a centralized algorithm of k–core decomposition, which
recursively deletes the vertices having a degree of less than k, along with their
incident edges. This process continues until all the vertices and their incident
edges are removed from the network. The required running time complexity of
this algorithm is O(max(m,n)), and for connected networks, it reduces to O(m).

However, with the higher availability of social media data, the size of the
network representing graph can be so that that single host might fail to process
them due to memory limitation. On top of that, in some scenario, the graph itself
can be distributed into multiple host machines, and therefore, makes it impractical
to gather all the partial data in a central repository. For large scale graph analysis,
Montresor et al. [66] proposed a distributed algorithm for k–shell decomposition.
Their algorithm is based on the maximality of cores, which states that for any
vertex u, the coreness is the largest among all the k values such that the number
of neighbors of u is at least k which belong to at least the k–shell. That means
in order to compute the coreness of any vertex u, it is sufficient to know the
information of coreness of its neighbors, which is a local information. Therefore,
the distributed k–core algorithm proposed by [66] starts with each of the vertices
estimating its own coreness and sharing it with the neighbors. At the same time,
it also receives the estimates from its neighbors, and using them rectifies its own
estimation once again. In case of any update, a new coreness value is generated
shared with the neighbors. This overall process continues until a convergence is
achieved.

Thomo et al. [85] provided a cluster-based implementation of k–core decompo-
sition on Apache Giraph [61] on Amazon AWS. Their work provides an evidence
that Giraph is suitable for large scale graph analysis.

4 User Attributed Core Decomposition (UACD)

We propose a method of finding the most influential spreaders in Twitter social
network using User Attributed Core Decomposition. Our modified core value is
computed by associating user information with the coreness of any node v of the
network. We also provide a distributed implementation of our proposed method
UACD.
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4.1 Selection of User Attributes

As per the discussion of the earlier sections, it is evident that the conventional
coreness (k value) of a node in a network is not solely good enough to find its
spreadability in the network since it only considers the network topology. Further-
more, if two nodes have the same k value, there is no way to differentiate the
spreadability of these two nodes by only k values. In our proposed user attributed
core decomposition method, we accommodate various user information with the
k (found from the traditional k –core decomposition method) value of each of the
nodes. This user information can be extracted from the social network account
(from the Twitter account in our case) of the corresponding user represented by
the node in the network. In case of a standard social network dataset, it is most
likely to be a subset of the real social network and it is not possible to analyse
the global structure of the network using such kind of dataset. Furthermore, the
larger the dataset i.e. the more it provides the global structure of the whole net-
work, the higher the complexity becomes to identify the most influential spreaders
in an efficient manner.

Therefore, it is evident that user information that provides significant addi-
tional information of the node on the real network (beyond the topology of the
available dataset), associating them to the calculation of finding the spreadability
of the corresponding user in the social network certainly can play a noteworthy
impact.

The types of user information that are used to find the modified k value are
as follows:

– Number of followers: The naive approach of finding the most influential
spreader on a network simply declares the node with the maximum number
of neighbours as the most influential. Intuitively, the most connected node is
very likely to be an influential spreader of the network. Hence the number of
followers is a key parameter which should be taken into consideration with k
value.

– Number of friends: The argument of incorporating this parameter is very
similar to the above argument. The users that have a higher number of friends,
are likely to disseminate information among a large number of people.

– Number of tweets: This parameter can determine the activeness and signif-
icance of the user in a social network. The users that have a higher number
of tweets, are likely to be more active in the social network or they have been
in the social network for a large time which indicates his importance as an
influential spreader. Consecutively, information diffusion through such a node
is likely to be higher.

– Verified status of the user: Since a verified node is more trusted, it is likely
to be an efficient spreader than a non-verified node.

4.2 Deriving UACN – User Attributed Core Number

We devise a formula to get the UACN score for each node. We first determine
the traditional coreness of each of the nodes i.e. the k value, using the more
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Table 2: Impact of the 4 parameters in calculating UACN

Rank Followers Count Friends Count Tweets Count k UACN

1 80143987 124226 9009 713 43.686
2 107260970 297555 30458 678 43.589
3 110044764 611101 15683 655 42.185
4 28598476 1737 240848 698 40.624
5 108232757 221 10130 713 37.646

conventional k–core decomposition method. After that, we normalize each k value
by the following formula

knorm =
k

kmax

After that, we used the following formula to get the UACN values. We refer to this
equation as UACN Formula . The main idea is to emphasize those nodes that have
a higher number of followers, friends, and tweets. In addition, we emphasize the
nodes that are verified. We are assigning equal weights to all these 4 parameters.

UACN = knorm × (log(nfollowers) + log(nfriends)

+ log(nstatus) + isverified× C)
(9)

We used logarithm for the first three parameters because generally, these values
increase exponentially and an efficient spreader is likely to have a higher value for
these parameters. Table 2 shows the values of these parameters for some influential
nodes and the intuitive rationale behind our formula. As we can see, a higher k
value does not necessarily mean a higher UACN value. In Section 7, we’ll discuss in
detail about the performance benefits of using this UACN. As mentioned earlier, in
this formula our goal was to boost up the ks values of those nodes who are verified
and which have a higher number of followers, friends, and statuses. As a result,
the knorm value is multiplied by the sum of these factors, and UACN is calculated.
We set C = 5 as the multiplication factor with the isverified attribute which
actually provides it the equal weight of having 100,000 followers. We set the value
of C empirically which is further described in Section 7.

4.3 Algorithm Description with Complexity Analysis

For implanting UACD, first, we have to identify the conventional core numbers of the
nodes using k–core decomposition method. We have used an efficient implemen-
tation of k–core decomposition proposed by Khaouid et al. [45]. The Algorithm 1
shows the steps of deriving traditional coreness of the nodes using the algorithm
proposed in [45] as well the steps of applying UACN Formula for finding user at-
tributed core numbers of the nodes. The notations |V | and |E| respectively denote
the size of the vertex set and edge set of considering graph G. The algorithm
begins with initializing five necessary arrays: d, b, D, p, and UACN. For the sake
of the algorithm, the vertices of our considering social network graph G is labels
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with numbers starting from 1. Now, index i of array d holds the degree of node
i in the graph. Array D is simply a sorted array of the labels of nodes based on
their degree in G. Array b is populated in such a way that index i of array b holds
the starting position of i degree nodes in array D. Finally, index i of array p holds
the position of the ith node in array D. The helping function ifExist(d, i) returns
1 in case i exists in the array d. On the other hand, occurrence(d, i) returns the
number of occurrence of i in the array d.

The first for loop at line 21 runs for |V | times, and at each time it picks a
vertex v from D. The coreness of v at this time is d[v]. At this time vertex v is
detached from graph G. Consequently, the for loop at line 23 scans for each vertex
u from its neighbors, and the degree of u is decremented by one if it has a higher
degree than v in graph G. Accordingly, the position of u in D is redetermined.
This is achieved by swapping u with the first vertex w with the same degree value
in D. Also, the arrays b and p are updated accordingly. When the for loop of line
21 is completed, the array d contains the coreness values of each of the nodes of
graph G. The third for loop at line 37 normalizes the coreness values of the nodes
by diving them with the maximum coreness among the nodes. Finally, the forth
for loop at line 41 derives the UACN values of the nodes by associating the user
attributes of the nodes using the UACN Formula of Equation 9. At line 43, the
array holding UACN values is sorted and returned at the end of the algorithm.

The running times of the initialization of arrays d, b, D, and p are O(|V |),
O(max(dG)), O(max(dG) · |V |), and O(|V |), respectively. The outer for loop of line
21 and the inner loop of line 23 run for O(|V |) and O(max(dG)) times respectively,
which make an overall running time of O(max(dG) · |V |). Finally, the UACN values
are calculated and sorted at line 41 and 43 in O(|V |) time and O(|V |log2|V |)
time, respectively. Since max(dG) � log2|V |, the running time of Algorithm 1 is
O(max(dG) · |V |).

Table 3 shows a comparison of running time complexities of the comparing
methods mentioned in the upcoming Section 6. Brandes [15] provided a BFS-
based algorithm to determine the distance and shortest-path counts from each
vertex. Using this algorithm as a pre-processing part, the complexity of Betweeness
Centrality can be obtained as O(|V |·|E|). Iyer et al. [42] provided a faster algorithm
for Closeness centrality which costs a running time of O(|V |2 ·log2|V |). The Degree
Centrality measure needs to count the incident edges on each of the vertices, and
therefore, has a time complexity of O(|E|). The main contributing part to the time
complexity of HybridRank algorithm by Ahajjam et al. [2] is the measurement of
eigenvector centrality. Therefore, both the HybridRank and Eigen Vector centrality
have a time complexity of O(|V |+ |E|).

5 Evaluation Metrics

In this section, we briefly present the metrics we use to evaluate the merit of our
proposed ranking technique against the already established ones. In the following
two sections, we present the environment we use to run our experiments, the
datasets we use, and the output of our experiments. We use multiple evaluation
metrics so that the comparison can be performed from every possible aspect.
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Algorithm 1: User Attributed Core Decomposition

Input : Vertex Set of Graph G: V
Edge Set of Graph G: E
Degree Set of Graph G: dG
Follower Count of Vertices of Graph G: followers
Friend Count of Vertices of Graph G: friends
Status Count of Vertices of Graph G: tweets
Verified Status of Vertices of Graph G: verified

1 d← [0]× |V |, b← [0]× max(dG), D ← [0]× |V |, p← [0]× |V |, UACN← [0]× |V |
2 for i← 1 to |V | do
3 d[i]← dG[i]
4 end
5 b[1]← ifExist(d, 1)
6 for i← 2 to max(dG) do
7 b[i]← d[i− 1] + occurrence(d, i− 1)
8 end
9 index← 1

10 for i← 1 to max(dG) do
11 for j ← 1 to |V | do
12 if d[j] = i then
13 D[index]← j
14 index← index+ 1

15 end

16 end

17 end
18 for i← 1 to |V | do
19 p[D[i]]← i
20 end
21 for i← 1 to |V | do
22 v ← D[i]
23 for u ∈ neighbour(v) do
24 if d[u] > d[v] then
25 du← d[u], pu← p[u]
26 pw ← b[du], w ← D[pw]
27 if u! = w then
28 D[pu]← w, D[pw]← u
29 p[u]← pw, p[w]← pu

30 end
31 b[du]← b[du] + 1
32 d[u]← d[u]− 1

33 end

34 end

35 end
36 kmax ← max(d)
37 for i← 1 to |V | do
38 d[i]← d[i]/kmax

39 end
40 for i← 1 to |V | do
41 . Applying UACN Formula

UACN[i]← d[i]×(log(followers[i])+log(friends[i])+log(tweets[i])+verified[i]×C)
42 end
43 sort(UACN)
44 return UACN
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Table 3: Comparison of running time complexity among algorithms of finding the
most influential spreaders on a network

Method Time Complexity

Betweenness Centrality O(|V | · |E|)
Closeness Centrality O(|V |2 · log2|V |)

Degree Centrality O(|E|)
Eigen Vector Centrality O(|V |+ |E|)

HybridRank O(|V |+ |E|)
Traditional K–core Decomposition O(|E|)

User Attributed Core Decomposition O(max(dG) · |V |)

5.1 Modified Jaccard Similarity Coefficient

Jaccard similarity coefficient is used in order to measure the similarity between
any two finite sets. This metric can be measured as the ratio of the size of the
intersection of the two comparing sets to the size of the union of them. If A and
B are our two comparing sets, then the conventional Jaccard similarity coefficient
J(A,B) is defined as,

J(A,B) =
|A ∩B|
|A ∪B| (10)

In this paper, we intend to measure the similarity of top n items from two
different rankings. Let a and b are two comparing methods and A and B are the
two generated rankings respectively, An and Bn are subsets of A and B respec-
tively with top n elements, then we define modified Jaccard similarity coefficient
Jm(A,B)@n as follows,

Jm(a, b)@n =
|An ∩Bn|

n
(11)

We use this modified metric mainly to test the proportion of the common users
in the two n sized sets containing the top n most influential spreaders identified
by any two comparing ranking algorithms. While comparing with an established
and accurate method, the higher the overlap is, the more reliable the comparing
ranking algorithm.

5.2 Rank Correlation Coefficient

In order to measure the strength of association and the direction of relationship
between two variables, we use correlation analyses. It provides a quantitative mea-
surement of the strength of relationship, which is referred to as correlation coeffi-
cient, and varies between +1 and −1. A perfect degree of association between the
two comparing variables is denoted by a value of ±1. As the relationship between
the two variables gets weaker, this correlation coefficient value goes closer to 0.
The ± signs of the correlation coefficient is the indicating factor of the direction
of the association.

In Section 7, we measure the correlation between the ranked list of users (based
on their spreadability) generated by our User Attributed Core Decomposition
method and the rankings generated by other methods. We use two non-parametric
rank correlations: Kendall tau and Spearman’s rank correlation coefficient.
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5.2.1 Kendall Tau Correlation Coefficient

In order to identify the similarities in the ordering of any two comparing rank-
ings, we use the Kendall tau rank correlation coefficient. To do so, Kendall Tau
correlation coefficient picks each pair of observations between the two comparing
rankings, and then identifies the strength of association according to the concor-
dance and discordance between the pairs. Assume that L1 and L2 are the two
rankings that are to be compared. Then Kendall analysis takes the following two
properties into consideration:

– Concordant: Any pair of items (x1, y1) in L1 and (x2, y2) in L2 are considered
as concordant if and only if they meet one of the following two conditions:

– (rank in L1(x1) > rank in L2(x2) and
rank in L1(y1) > rank in L2(y2))

– (rank in L2(x2) > rank in L1(x1) and
rank in L2(y2) > rank in L1(y1))

– Discordant: Any pair of items (x1, y1) in L1 and (x2, y2) in L2 are considered
as discordant if and only if they meet one of the following two conditions:

– (rank in L1(x1) > rank in L2(x2) and
rank in L1(y1) < rank in L2(y2))

– (rank in L2(x2) > rank in L1(x1) and
rank in L2(y2) < rank in L1(y1))

Kendall Tau correlation coefficient is denoted by τ . If L1 and L2 are two
different rankings with n similar elements, N(C) and N(D) represent the number
of concordant and discordant pairs respectively, then τ can be calculated using
the following equation:

τ(L1, L2) =
N(C)−N(D)

1
2n(n− 1)

(12)

5.2.2 Spearman’s Rank Correlation Coefficient

Spearman’s Rank correlation coefficient is represented by Rs, which is used to
measure the strength and direction of the association between any two variables.
The value of Rs varies from −1 to +1. The correlation is assumed to be stronger as
Rs reaches closer to +1. A perfect positive correlation is +1 and a perfect negative
correlation is −1. Assume that L1 and L2 are two rankings of same n elements. For
any element x, if the rankings of x in L1 and L2 are RNKL1

(x) and RNKL2
(x)

respectively, then the distance of ranks, d = RNKL1
(x)−RNKL2

(x). This value is
squared to remove any negative values and when written in mathematical notation
the Spearman Rank formula looks like this:

Rs(L1, L2) = 1− 6
∑
d2

n3 − n (13)

5.3 Normalized Discounted Cumulative Gain, NDCG

In this paper, we use Normalized Discounted Cumulative Gain, NDCG which is
one of the widely used techniques to evaluate ranking systems. Let GT represent
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the weighted set of all users who generate the network. The weights are the rele-
vance of the nodes to be selected as the most influential spreader on the network
and the set GT is sorted according to this relevance value. We can refer to these
relevance values and the ranking of the nodes in this set as our ground truth.

Now let X be the ranking of nodes generated by any comparing methods. In
X, nodes are ordered according to their spreadability in the network. We define
cumulative gain for the first m rankings in X, CG@m as:

CG@m =
m∑
i=1

reli (14)

Where reli indicated the relevance value of X’s ith ranked node in the ground
truth GT .

However, CG does not take into consideration the rank i of the elements in
X. Discounted cumulative gain (DCG) penalizes each relevance value based on
its rank in the results. Therefore, we define Discounted cumulative gain for first
m rankings in X as:

DCG@m =
m∑
i=1

reli
log(i+ 1)

=
m∑
i=1

2reli − 1

log(i+ 1)
(15)

IDCG is the DCG of the best possible results based on the ground truth.
Therefore we define Ideal Discounted cumulative gain for first m rankings in GT
as:

IDCG@m =
m∑
i=1

reli
log(i(I) + 1)

=
m∑
i=1

2reli − 1

log(i(I) + 1)
(16)

Where i(I) indicates the Ideal rank of a node in GT . NDCG is obtained by
dividing DCG by Ideal DCG (IDCG), which normalizes the gain within [0, 1].
Therefore NDCG for first m rankings in X can be defined as,

NDCG@m =
DCG@m

IDCG@m
(17)

In our evaluation section, we use the metric NDCG@m(a, b) as the Normalized
Discounted Cumulative Gain for the first m elements of a ranking generated by
method a, taking the ranking generated by method b as our ground truth (GT).

5.4 Running Time

Apart from the ranking related metrics, we also provide the comparison in running
time of our proposed method with the existing methods. As we have already
discussed, the global techniques incur a large amount of time to determine the
ranking of the nodes in a network. Therefore, to make them run within a feasible
amount of time, we perform this running time comparison on datasets with a
smaller number of nodes and edges.
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5.5 Infection Rate on SIR Model

We use infection rate function on SIR model to evaluate our proposed method.
This metric was introduced by Ahajjam et al. [2], which we use to compare different
methods of finding the most influential spreaders by simulating the network on
SIR model by setting the top 10 spreaders as the initially affected set. At any time
t, the infection rate can be defined as,

IR(t) =
NI(t) +NR(t)

n
(18)

Where IR(t) is infection rate at time t, NI(t) is number of infected nodes at time
t, NR(t) is number of recovered nodes at time t and n is the total number of nodes.

6 Experimental Setup

As we already have discussed, the global methods of finding the most influential
spreaders take a large amount of time to generate the final result. Therefore, to
evaluate the performance of our proposed User Attributed Core Decomposition
method of finding the most influential spreaders on Twitter social network, we
need to keep the size of the dataset considerably small. On the other hand, we run
the experiments in a distributed environment with large scaled social network data
which fails to run on a single computer since they experience memory overflow error
and/or take an infeasible amount of time due to larger computational complexity.
Consequently, we run our experiments on two different environments and they are
described below:

6.1 Cross Validation on a Single Computer

Global metrics like closeness or betweenness centrality possess a very high com-
putational complexity which makes them infeasible to apply on large datasets i.e.
networks with a large number of nodes and edges. Therefore, in order to cut off
the time requirement during the evaluation of the performance of our proposed
method against such global techniques with higher time complexity, we run all the
comparing methods on networks with a smaller number of nodes and edges on a
single computer with simple commodity hardware.

6.2 Large Network Analysis on Distributed Environment

MapReduce [24], introduced by Google in 2004, is a very popular framework for
parallelizing computational tasks for the processing of large-scale data-sets. Al-
though it is possible to use Map-Reduce for graph processing, its structure is not
natively optimized for this kind of tasks. That is why, another framework called
Pregel [60] was developed by the Google researchers, which is highly optimized
for processing graph data [37]. Apache Giraph [61, 62] is the open-source version
of Pregel [12] built on top of Hadoop. The main idea of Giraph is “think like a
vertex”. The computation of Giraph is iterative, where each iteration is called a



Identification of the Most Influential Spreaders in Distributed Environment 21

superstep. At every superstep, Giraph executes a user-defined function on each of
the vertices. During the execution of this user-defined function, at each superstep,
each node sends messages to its neighbors, to be received at the upcoming super-
step. Similarly, at each superstep, each node receives messages from its neighbors
sent during the previous superstep. Each superstep is kept apart from the other by
using barrier synchronization [81]. Whenever any node reaches the convergence,
it can leave the computation. We use Apache Giraph for implementing our pro-
posed User Attributed Core Decomposition method on a distributed environment
as described in the previous subsection 3.5.

6.3 Methods Compared

We evaluate the merit of the ranking generated by our method against the ones
generated by the following well established methods:

– Betweenness Centrality (BC)
– Closeness Centrality (CC)
– Degree Centrality (DC)
– Eigenvalue Centrality (EC)
– HybridRank (HR)
– User Attributed Core Decomposition (UACD): Our method

We simulate the graph networks of the datasets on the SIR model and as initially
affected nodes, we use the topmost influential spreaders generated by all the com-
paring methods. We use the implementation of SIR model from the python module
EoN [65]. The input networks of the EoN module are NetworkX [36] graphs. We
also use this python module to find the centrality measures of the network.

6.4 Datasets Used

In order to test the performance of our proposed User Attributed Core Decompo-
sition method of finding the most influential spreaders on Twitter social network,
we mainly use three real Twitter datasets. Since we have to compare the rank-
ing generated by our proposed method with the rankings generated by the global
techniques which take too much time to generate the results, we consider multiple
subsets of the main datasets with a smaller number of nodes and edges. Below we
briefly describe the datasets we use for evaluating our proposed method.

– We use the dataset from Kwak et al. [49] which is collected by crawling the
entire Twitter site for 6 months in 2009. This dataset contains 41.7 million
of user-profiles, 1.47 billion friend-follower relationships, 4,262 trending topics,
and 106 million tweets. However, due to Twitter’s new Terms of Services,
this dataset has removed the tweet contents. Therefore, we only generate the
friend-follower graph from this dataset. We refer to this dataset as Kwak-
twitter-2009. However, for cross validation with global techniques of finding
the most influential spreaders, we make two subgraphs from this dataset with
a smaller number of nodes and edges and we define them as follows.
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– Kwak 50K: We generate a subgraph from the main dataset with 50,000
randomly selected nodes and the edges connecting them in the main graph.
Since at every run we select a different set of randomly selected graphs, the
number of average incident edges on each node varies from 1.5 to 4. We
refer this dataset to Kwak 50K in the upcoming sections.

– Kwak 100K: Similar to the previous one, this dataset is another subgraph
generated from the main one with randomly selected 100,000 nodes and
their incident edges. We refer to this dataset to Kwak 100K in the upcoming
sections.

– Another Twitter dataset we use is collected by Kristina Lerman [39] in the
year of 2010. It is a dataset containing 736,930 users and 36,743,448 links of
social relationship among them. In the following sections of this paper, we refer
to this dataset as Lerman-twitter-2010. To make it feasible to run the global
metrics on this dataset, we also generate a smaller dataset out of this one with
randomly selected 100,000 nodes and their incident edges and we refer to this
dataset as Lerman 100k in our upcoming sections.

– Twitter-Dynamic-Net: Lou et al. [55] and Hopcroft et al. [40] collected this
dataset for their research works. To collect this dataset, one of the known popu-
lar users on Twitter was selected and then 10,000 of his/her followers were ran-
domly collected. After that, these users were taken as seed users and a crawler
was used to collect all followers of these users by traversing “following” relation-
ships. The total number of users is 112,044. The crawler monitored the change
of the network structure among the 112,044 users during December, 2010 and
finally obtained 443,399 dynamic friend-follower relationships between them.
In our evaluation section, we refer to this dataset as Lou Hopcroft.

6.5 Users’ Attribute Collection

Since our main goal is to incorporate Twitter’s user profile information with the
conventional core value found from k–core decomposition method to identify the
most influential spreaders on Twitter social network, we have to collect the rel-
evant user information (as mentioned in Eq. 9) from Twitter. We use Twitter
GET users/lookup API [59,84] that returns a json response containing a bunch of
information among which we extract our required ones.

7 Experimental Outcome and Evaluation

As we mentioned in the Equation 9, we use a constant multiplication factor of
five (5) to associate a weight to the isverified attribute of each of the Twitter user
IDs. In this experiment section, first, we provide an empirical justification of the
decision of setting five (5) as the multiplication factor. The later part of this section
provides our experimental outcome and establishes the merit of our proposed User
Attributed Core Decomposition method based on the metrics discussed in Section
5.
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Table 4: Topological features of each of the used datasets. The value of epidemic
infection probability, β is calculated as β = average degree

average second−order degree

Datasets
No. of
Nodes

No. of
Edges

Average
Degree

Average Second
Order Degree

β for
SIR Simulation

Kwak 50K 50, 000 166, 523 3.33 107.45 0.031
Kwak 100K 100, 000 487, 010 4.87 200.48 0.024

Lerman 100K 100, 000 2, 043, 091 20.43 1484.33 0.014
Lou Hopcroft 112, 044 443, 399 3.68 81.78 0.045

7.1 Empirical Identification of Multiplication factor in UACN Equation

For each of our four considering datasets, we generate the ranked list of the most
influential spreaders using the SIR model and our proposed user attributed core
decomposition method. We determine the real ranking of the nodes for every
dataset based on their spreadability by simulating the SIR model on the network
generated from the corresponding dataset. For each network, the SIR model is
simulated for 100 times with β = average degree

average second−order degree and γ = 1 and then
by averaging the outcome, we determine the set of users ordered by their spread-
ability. The average degree, average second− order degree and corresponding β
values for each of the datasets are given in Table 4. After that, we normalize the
spreadability of each of the users dividing them by the spreadability of the first
ranked user. These fractions are considered as the weight values and these weights
are considered as the relevance of each of the users to be considered as the most
influential spreader and this ranked list is used as the ground truth for computing
Normalized Discounted Cumulative Gain (NDCG) to evaluate the merit of the
ranking generated by our proposed method.

Now we determine the spreadability of each of the users by our proposed
method. The merit of this ranking is evaluated using the NDCG metric tak-
ing the SIR model generated ranking as the ground truth. We vary the value of
the constant multiplier, C in the Equation 9 from 1 to 10 and each time determine
the ranked list of the most influential spreaders. The merit of each of the rankings
is evaluated using NDCG value and compared the SIR model generated ranking
and then the results are plotted on Figure 3. The curves are further smoothened
by using interpolation. We can observe that the UACN Formula provides better
performance for C ≈ 5 which is shown by a straight line in the graph. Therefore,
we set C = 5 in the UACN Formula (Eq. 9).

7.2 Merit Evaluation of User Attributed Core Decomposition Method

The following subsections provide the description of the experiments we conduct
and based on that evaluate the performance of our proposed method of identifying
the most influential spreaders. First, we compare the coefficient metrics and other
evaluation indices among our comparing methods to measure their similarity in
determining the most influential spreaders. After that, we simulate the network on
SIR model with the topmost influential spreads identified by each of the comparing
methods and provide a graphical demonstration of the performance of each of the
comparing methods in identifying the most influential spreaders with the help of
epidemiology.
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Fig. 3: NDCG values for the top 100 most influential spreaders for the ranking
generated by user attributed core decomposition method taking the SIR model
generated ranking as the ground truth. The value of the constant, C in Equation
9 is varied to observe the impact. The maximum NDCG value for each of the
dataset is obtained around the C = 5 line.

7.2.1 Rank Correlational Coefficients

First, we measure Kendall Tau and Spearman rank correlational coefficient be-
tween the ranking generated by each of the comparing methods and the one gen-
erated by SIR method. Figure 4a and 4b respectively plots the results using vertical
bars.

We can see that our proposed user attributed core decomposition method
mostly outperforms the existing methods or at least provides a similar better result
for each of the datasets. To be specific, UACD provides 2.2− 22% and 1.2− 22.2%
more accurate result than the existing methods while we consider Kendall Tau and
Spearman rank correlational coefficient, respectively. Here the closest competitor
is the HybridRank (HR) proposed by Ahajjam et al. [2], which provides on an
average 1.35% less accuracy for the considering four datasets .

7.2.2 Jaccard Index and NDCG

We evaluate the merit of each of the comparing methods by comparing their
generated ranking with SIR ranking using the metric, Modified Jaccard Similarity
Coefficient, and the results are demonstrated in Figure 4c using vertical bars.
The results are shown for the first 100 most influential spreaders identified by
each of the comparing methods. It can clearly be seen that the user attributed
core decomposition method outperforms all other methods with 1 − 22% better
accuracy.

Figure 4d plots the Normalized Discounted Cumulative Gain (NDCG) val-
ues when top 100 most influential spreaders identified by each of the considering
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(a) (b)

(c) (d)

Fig. 4: Comparison between the ranking generated by the simulation of SIR model
and by each of comparing methods based on the metrics: Kendall Tau (4a), Spear-
man (4b) Rank Correlational coefficent, Modified Jaccard Similarity Coefficient
(4c), and NDCG (4d). The results of Modified Jaccard Index and NDCG are eval-
uated for the top 100 most influential spreaders identified by each of the methods.

methods are compared to the top 100 most influential spreaders generated by the
SIR model. As earlier, the ranking generated by our proposed user attributed core
decomposition method shows the maximum similarity (2− 26.6% better than the
competitors) with the ideal ranking generated by the SIR model.

To summarize, we can observe that based on the two ranking correlation co-
efficients, Kendall Tau and Spearman, and two comparison metrics, the Modified
Jaccard Similarity Coefficient and NDCG, the user attributed core shows signif-
icantly decent performance in comparison to the state-of-the-art methods and
provides a 12.5% better accuracy, averaging over all the comparing methods and
considering datasets.
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Table 5: Comparison of running time (in sec) for UACD on different datasets against
existing methods for finding most influential spreaders.

Datasets
No. of-
Nodes

No. of-
Edges

Eigen Vector-
Centrality

Closeness
Centrality

Betweenness
Centrality

HybridRank
User Attributed

Core Decomposition

Kwak 50K 50, 000 166, 523 1.18 57.87 78.67 1.76 0.78
Kwak 100K 100, 000 487, 010 2.77 312.78 428.67 3.11 1.55

Lerman 100K 100, 000 2, 043, 091 32.67 8165.78 9876.45 55.67 13.85
Lou Hopcroft 112, 044 443, 399 3.31 487.77 544.88 3.96 1.28

7.2.3 Comparison on Running Time

We run all six comparing methods on the four datasets mentioned in Table 4, and
observe the executing time. The results are shown in Table 5. The running times for
degree centrality method are omitted since they do not possess enough significance
based on the preceding discussion. It can be observed that our proposed User
Attributed Core Decomposition method has the least running time among the
comparing methods mentioned in the table. It is very intuitive since we use the
traditional k–core decomposition method as the baseline which is the fastest among
these comparing methods. The latter part of our method where we apply the
UACN Formula contributes very little to the running time. Our proposed method
can offer 1.5−100×, 1.8−276.5×, 2.4−713×, and 2.6−425.7× faster running
time than the comparing methods for the four listed datasets, respectively with
an average of 175× improvement in running time.

7.3 Simulation on SIR Model

We simulate the SIR model to depict the disease diffusion based on the topology
of our experimental datasets. For each method, the SIR model is simulated on
the same dataset for hundred (100) times so that a steady result is obtained, and
the simulation was run for infection transition probability, β = 0.1 and recovery
probability, γ = 1. We observe the simulation up to a maximum time, tmax = 16.
The simulations stop when saturation in infection spreading is achieved and Figure
5 shows the infection rate achieved with the flow of time for each of the methods
on each of the datasets. Every time we select the top 10 most influential spreaders
identified by the comparing methods and assign them as the initially affected nodes
on the SIR model. We can clearly see that the infection rate while selecting the top
10 most influential spreaders obtained by our User Attributed Core Decomposition
method provides equally better performance or outperforms all other comparing
methods. On top of that, our method can generate accurate result in significantly
lower computational complexity than the global methods.

8 Large Network Analysis on Distributed Environment

We configure the distributed environment on Amazon EC2 [6], which provides a
managed Hadoop [82] framework in order to simplify big data processing. Hadoop
makes it easier, faster, and cost-effective to process vast amounts of data in a
distributed manner across dynamically scalable Amazon EC2 instances.
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Fig. 5: Simulation of SIR model on 4 datasets using each of the methods.

Dataset
No of No of

Running time
No of Maximum Average

Edges Vertices Iterations K value K Value

Lerman-Twitter-2010 0.7M 36M 1218 80 334 2.13
Kwak-Twitter-2009 41.6M 41.7M 2987 98 713 3.87

Table 6: Summary of User Attributed Core Decomposition using Apache Giraph
on top of Hadoop Cluster with 4 Slave Nodes

8.1 Frameworks Used

On our Amazon EC2 cluster, we install Hadoop 2.4.0 for distributed framework.
We also install Apache Giraph [61] for distributed graph processing. We rebuild
the Giraph framework with the source code of k–core decomposition and apply
k–core decomposition in a distributed manner. Then we apply our own UACN
Formula which includes node information and the result shows it can handle big
datasets with a large number of users and social links.
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8.2 Experimental Outcome

In our distributed environment, we apply the User Attributed Core Decomposition
method on our two high dimensional datasets, Lerman-twitter-2010 and Kwak-
twitter-2009 and the experimental summary is noted on Table 6. This particular
experiment is carried out on a cluster with 1 master node and 4 slave nodes. We
install a well known scalable distributed monitoring system, Ganglia (version 3.7.2)
[64] to keep an eye on various parameters of the cluster during the experiment. We
vary the number of slave nodes in our cluster setup from 3 to 12 and Figure 6 shows
the impact on the execution time. We can see that with the increase in cluster size,
Giraph provides a significant decrease in running time i.e. a good scalability until
a certain cluster size and after that, the running time again starts to increase. In
Figure 6, we can observe that the execution time is lowest for 7 and 8 slave nodes
respectively for the datasets Lerman-twitter-2010 and Kwak-twitter-2009.

In case of distributed cluster computing, when a job is submitted for execution,
the job is divided into multiple independent tasks and those tasks are assigned to
be carried out by different slave nodes. When all the tasks are completed, the
partial results can be aggregated by transmitting messages within the cluster. As
we already have discussed in Subsection 6.2, the computation in Giraph introduces
supersteps which result in the transmission of messages regarding any modification
in vertices’ local information during the execution among the worker nodes. Now
intuitively we can say that, as the number of slaves increases in our cluster, the
job is divided into more tasks and the tasks are distributed in the larger number
of slave nodes which eventually decreases the time per task and this contributes to
the decrease in execution time. However, at the same time, the increased number
of slave nodes increases the number of transmitted messages within the cluster.
This contributes adversely to the execution time and eventually, after a certain
size of the cluster, the overall running time starts to increase. Figure 7(a) and 7(b)
provides a visual explanation of this phenomenon for datasets Lerman-twitter-
2010 and Kwak-twitter-2009 respectively. Both the figures show the changes in
average CPU usage per slave node and the number of transmitted messages within
the cluster. As per our preceding discussion, we can observe that average CPU
usage per slave node gradually decreases with the increase in the slave count while
the number of transmitted messages increases. The rate of decrements in CPU
usage is much higher than the rate of increment in message count until the two
curves intersect. On the other hand, after the intersection, the rate of increment
in message count is much higher than the rate of decrements in CPU usage.

9 Future Work

The performance can be further increased by incorporating topic information. For
example, by examining the past statuses of a user, we can gather information about
his specialty. This information can increase the performance of finding influential
spreaders dramatically. As our future work, we plan to find the topic specialization
of a user and try to improve the performance by adding topic specialization. We
also plan to evaluate the performance on various other networks as well.

An online implementation of our method can show each user’s spreadability
by some manner in an active or “live” network. If the node’s information and his



Identification of the Most Influential Spreaders in Distributed Environment 29

Fig. 6: Speed up with the increase in cluster size

(a) (b)

Fig. 7: The amount of CPU utilization decreases as the number of instances in
the cluster increases. On contrary, it gradually increases the intra-cluster message
transmission. The intersecting point of these two curves provides the optimum
number of instances in a cluster when we run our User Attributed Core Decompo-
sition method in a distributed environment. Figure (a), (b) are shown for datasets
Lerman-twitter-2010 and Kwak-twitter-2009, respectively.

neighbor’s information are known as apriori, then building something like this will
be possible. We plan to implement the online version for a small social networking
site for which data is readily available.

10 Conclusion

This paper focuses on finding the most influential spreader of a network in a dis-
tributed manner. We have shown how global methods fail to handle large scale
datasets for their higher time and space complexity, which makes them infeasi-
ble to use on larger networks despite their capability of providing more accurate
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results. We have also discussed the limitation in performance in case of local meth-
ods even-though they possess very marginal complexities. In order to address these
limitations, we propose a new measure for ranking the users on the popular social
network, Twitter based on their spreadability. Our proposed method incorporates
user attributes that can be extracted from their corresponding twitter accounts
with the traditional core value of the user on the network. We refer to our pro-
posed method as User Attributed Core Decomposition (UACD). We have evaluated
the performance of our approach on a Twitter dataset. We have shown that our
approach outperforms other existing methods or at least provides a similar or bet-
ter performance. To be specific, UACD can offer 12.4% more accurate result (on an
average) in 175× less time (on an average). In summary, our proposed method
can provide an efficient result similar to a global method while keeping the time
and space complexities lower just like a local approach. We have also provided
a distributed implementation of our method and shown that in the distributed
environment, it can handle a dataset with a number of vertices of 41.7M , while
all the existing methods fail to handle such large datasets due to their higher time
and space complexities.
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